【題目】如圖,在ABC中,已知AB=BC=10,AC=4,AD為邊BC上的高線,P為邊AD上一點,連結BP,E為線段BP上一點,過D、P、E三點的圓交邊BC于F,連結EF.
(1)求AD的長;
(2)求證:△BEF∽△BDP;
(3)連結DE,若DP=3,當△DEP為等腰三角形時,求BF的長;
(4)把△DEP沿著直線DP翻折得到△DGP,若G落在邊AC上,且DG∥BP,記△APG、△PDG、△GDC的面積分別為S1、S2、S3,則S1:S2:S3的值為 .
【答案】(1)AD=8,見解析;(2)△BEF∽△BDP,見解析;(3)BF的長為、、,見解析;(4)S1:S2:S3=3:3:2,見解析.
【解析】
(1)設CD=x,則BD=10-x,在Rt△ABD和Rt△ACD中利用勾股定理列方程即可求出x,進而求出AD,
(2)由圓內接四邊形性質可知∠BFE=∠BPD,即可證明△BEF∽△BDP
(3)因為DP=3,由②BP=3,可得分三種情況PE=DP、DE=PE、DP=DE利用直角三角形和等腰三角形性質先求出EB,再根據(jù)即可求解;
(4)連接EG交PD于M點,DG∥BP和折疊的性質可得∠EPD=∠EDF=∠PDG,EP=PG=ED=DG,即可得出E是BP中點,進而求出,由,即可求出PM=2,PD=4,AP=4,再利用三角形面積求法即可解答.
解:(1)設CD=x,則BD=10﹣x,
在Rt△ABD和Rt△ACD中,AD2=AB2﹣BD2=AC2﹣CD2,
依題意得:,
解得x=6,
∴AD==8.
(2)∵四邊形BFEP是圓內接四邊形,
∴∠EFB=∠DPB,
又∵∠FBE=∠PDB,
∴△BEF∽△BDP.
(3)由(1)得BD=6,
∵PD=3,
∴BP==,
∴cos∠PBD=,
當△DEP為等腰三角形時,有三種情況:
Ⅰ.當PE=DP=3 時,BE=BP﹣EP=,
Ⅱ.當DE=PE時,E是BP中點,BE=,
Ⅲ.當DP=DE=3時,PE=2×PDcos∠BPD==,
若DP=3,當△DEP為等腰三角形時,BF的長為、、.
(4)連接EG交PD于M點,
∵DG∥BP
∴∠EPD=∠EDF=∠PDG,
∴PG=DG,
∵EP=PG,ED=DG,
∴四邊形PEDG是菱形,
∴EM=MG,PM=DM,EG⊥AD,
又∵BD⊥AD,
∴EG∥BC,
∴EM=BD=3=MG,,
∴,
∴AM=6,
∴DM=PM=2,
∴PD=4,AP=4,
∴S△APG==×4×3=6,
S△PDG==×4×3=6,
S△GDC===4.
∴S1:S2:S3=6:6:2=3:3:2.
科目:初中數(shù)學 來源: 題型:
【題目】某市甲、乙、丙三個景區(qū)是人們節(jié)假日游玩的熱點景區(qū),某學校對九(5)班學生“五一”小長假隨父母到這三個景區(qū)游玩的計劃做了全面調查,調查分四個類別A:游三個景區(qū):B:游兩個景區(qū);C:游一個景區(qū):D:不到這三個景區(qū)游玩,現(xiàn)根據(jù)調查結果繪制了不完全的條形統(tǒng)計圖和扇形統(tǒng)計圖如下:
請結合圖中信息解答下列問題:
(1)九(5)班現(xiàn)有學生人,并補全條形統(tǒng)計圖;
(2)求在扇形統(tǒng)計圖中表示“B類別”的扇形的圓心角的度數(shù);
(3)根據(jù)調查顯示,小劉和小何都選擇“C類別”,求他倆游玩的恰好是同一景區(qū)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形OABC中,點B的坐標是(4,4),點E、F分別在邊BC、BA上,OE=2.若∠EOF=45°,則F點的縱坐標是( 。
A.1B.C.D.﹣1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖①是一枚質地均勻的正四面體形狀的骰子,每個面上分別標有數(shù)字1,2,3,4,圖②是一個正六邊形棋盤,現(xiàn)通過擲骰子的方式玩跳棋游戲,規(guī)則是:將這枚骰子擲出后,看骰子向上三個面(除底面外)的數(shù)字之和是幾,就從圖②中的A點開始沿著順時針方向連續(xù)跳動幾個頂點,第二次從第一次的終點處開始,按第一次的方法跳動.
(1)隨機擲一次骰子,則棋子跳動到點C處的概率是
(2)隨機擲兩次骰子,用畫樹狀圖或列表的方法,求棋子最終跳動到點C處的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=3,點E是對角線BD上的一點,連結AE,過點E作EF垂直AE交BC于點F,連結AF,交對角線BD于G.若三角形AED與四邊形DEFC的面積之比為3:8,則cos∠GEF=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知菱形ABCD,點E是AB的中點,AF⊥BC于點F,聯(lián)結EF、ED、DF,DE交AF于點G,且AE2=EGED.
(1)求證:DE⊥EF;
(2)求證:BC2=2DFBF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ABC為銳角,點M為射線AB上一動點,連接CM,以點C為直角頂點,以CM為直角邊在CM右側作等腰直角三角形CMN,連接NB.
(1)如圖1,圖2,若△ABC為等腰直角三角形,
問題初現(xiàn):①當點M為線段AB上不與點A重合的一個動點,則線段BN,AM之間的位置關系是 ,數(shù)量關系是 ;
深入探究:②當點M在線段AB的延長線上時,判斷線段BN,AM之間的位置關系和數(shù)量關系,并說明理由;
(2)如圖3,∠ACB≠90°,若當點M為線段AB上不與點A重合的一個動點,MP⊥CM交線段BN于點P,且∠CBA=45°,BC=,當BM= 時,BP的最大值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,光明中學一教學樓頂上豎有一塊高為AB的宣傳牌,點E和點D分別是教學樓底部和外墻上的一點(A,B,D,E在同一直線上),小紅同學在距E點9米的C處測得宣傳牌底部點B的仰角為67°,同時測得教學樓外墻外點D的仰角為30°,從點C沿坡度為1∶的斜坡向上走到點F時,DF正好與水平線CE平行.
(1)求點F到直線CE的距離(結果保留根號);
(2)若在點F處測得宣傳牌頂部A的仰角為45°,求出宣傳牌AB的高度(結果精確到0.01).(注:sin67°≈0.92,tan67°≈2.36,≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,矩形ABCD的對角線AC與BD相交于點O,點O關于直線AD的對稱點是E,連接AE、DE.
(1)試判斷四邊形AODE的形狀,不必說明理由;
(2)請你連接EB、EC,并證明EB=EC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com