【題目】如圖,光明中學(xué)一教學(xué)樓頂上豎有一塊高為AB的宣傳牌,點(diǎn)E和點(diǎn)D分別是教學(xué)樓底部和外墻上的一點(diǎn)(A,B,D,E在同一直線上),小紅同學(xué)在距E點(diǎn)9米的C處測得宣傳牌底部點(diǎn)B的仰角為67°,同時測得教學(xué)樓外墻外點(diǎn)D的仰角為30°,從點(diǎn)C沿坡度為1∶的斜坡向上走到點(diǎn)F時,DF正好與水平線CE平行.

(1)求點(diǎn)F到直線CE的距離(結(jié)果保留根號);

(2)若在點(diǎn)F處測得宣傳牌頂部A的仰角為45°,求出宣傳牌AB的高度(結(jié)果精確到0.01).(注:sin67°≈0.92,tan67°≈2.36,≈1.41,≈1.73)

【答案】(1) 3米 (2) 1.95米

【解析】

(1)利用正切函數(shù)定義解三角形求DE長度.(2)利用坡度定義,解直角三角形.

解:(1)過點(diǎn)FFHCEH.FHDE,DF∥HE,∠FHE=90°,∴四邊形FHED是矩形,則FH=DE,在Rt△CDE中,DE=CE·tan∠DCE=9×tan30°=3(),∴FH=DE=3().答:點(diǎn)FCE的距離為3米 

(2)∵CF的坡度為1∶,∴Rt△FCH中,CHFH=9(),∴EH=DF=18(),在Rt△BCE中,BE=CE·tan∠BCE=9×tan67°≈21.24(),∴AB=AD+DE-BE=18+3-21.24≈1.95()

答:宣傳牌AB的高度約為1.95

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩班各推選10名同學(xué)進(jìn)行投籃比賽,按照比賽規(guī)則,每人各投了10個球,兩個班選手的進(jìn)球數(shù)統(tǒng)計如表,請根據(jù)表中數(shù)據(jù)解答下列問題

進(jìn)球數(shù)/

10

9

8

7

6

5

1

1

1

4

0

3

0

1

2

5

0

2

1)分別寫出甲、乙兩班選手進(jìn)球數(shù)的平均數(shù)、中位數(shù)與眾數(shù);

2)如果要從這兩個班中選出一個班級參加學(xué)校的投籃比賽,爭取奪得總進(jìn)球團(tuán)體的第一名,你認(rèn)為應(yīng)該選擇哪個班?如果要爭取個人進(jìn)球數(shù)進(jìn)入學(xué)校前三名,你認(rèn)為應(yīng)該選擇哪個班?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)軸交點(diǎn)的橫坐標(biāo)為,,則對于下列結(jié)論:

①當(dāng)時,

②方程有兩個不相等的實數(shù)根,;

其中正確的結(jié)論有________(只需填寫序號即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,C是線段AB上一點(diǎn),分別以ACBC為邊作等邊△DAC和等邊△ECB,AEBDCD相交于點(diǎn)FG,CEBD相交于點(diǎn)H

1)求證:△ACE≌△DCB

2)求∠AFB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ADBC上的高,tanB=cos∠DAC.

(1)求證:AC=BD;

2)若sinC=,BC=12,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為6E,F分別是ABBC邊上的點(diǎn),且∠EDF=45°,將DAE繞點(diǎn)D逆時針旋轉(zhuǎn)90°,得到DCM

(1)求證:EF=MF;

(2)AE=2,求FC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一般地,任意三角形都是自相似圖形,只要順次連接三角形各邊中點(diǎn),則可將原三角形分割為四個都與它自己相似的小三角形.我們把(圖乙)第一次順次連接各邊中點(diǎn)所進(jìn)行的分割,稱為階分割(如圖);把階分割得出的個三角形再分別順次連接它的各邊中點(diǎn)所進(jìn)行的分割,稱為階分割(如圖)…,依此規(guī)則操作下去.階分割后得到的每一個小三角形都是全等三角形(為正整數(shù)),設(shè)此時小三角形的面積為.請寫出一個反映,之間關(guān)系的等式________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,點(diǎn)D、E分別在AB、AC上,BE、CD相交于點(diǎn)O.

1)若BD=CE,試說明:OB=OC.

2)若BC=10,BC邊上的中線AM=12,試求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,的垂直平分線,交,的垂直平分線正好經(jīng)過點(diǎn),與相交于點(diǎn).的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案