【題目】閱讀材料,解答問題:如果一個四位自然數(shù),十位數(shù)字是千位數(shù)字的2倍與百位數(shù)字的差,個位數(shù)字是千位數(shù)字的2倍與百位數(shù)字的和,則我們稱這個四位數(shù)“依賴數(shù)”,例如,自然數(shù)2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依賴數(shù)”.
(1)請直接寫出最小的四位依賴數(shù);
(2)若四位依賴數(shù)的后三位表示的數(shù)減去百位數(shù)字的3倍得到的結(jié)果除以7余3,這樣的數(shù)叫做“特色數(shù)”,求所有特色數(shù).
(3)已知一個大于1的正整數(shù)m可以分解成m=pq+n4的形式(p≤q,n≤b,p,q,n均為正整數(shù)),在m的所有表示結(jié)果中,當(dāng)nq﹣np取得最小時,稱“m=pq+n4”是m的“最小分解”,此時規(guī)定:F(m)=,例:20=1×4+24=2×2+24=1×19+14,因為1×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F(20)==1,求所有“特色數(shù)”的F(m)的最大值.
【答案】(1)1022;(2)3066,2226;(3)
【解析】
(1)由于千位不能為0,最小只能取1;根據(jù)題目得出相應(yīng)的公式:十位=2×千位﹣百位,個位=2×千位+百位,分別求出十位和個位,即可求出最小的四位依賴數(shù);
(2)設(shè)千位數(shù)字是x,百位數(shù)字是y,根據(jù)“依賴數(shù)”定義,則有:十位數(shù)字是(2x﹣y),個位數(shù)字是(2x+y),依據(jù)題意列出代數(shù)式然后表示為7的倍數(shù)加余數(shù)形式,然后求出x、y即可,從而求出所有特色數(shù);
(3)根據(jù)最小分解的定義可知: n越小,p、q越接近,nq﹣np才越小,才是最小分解,此時F(m)=,故將(2)中特色數(shù)分解,找到最小分解,然后將n、p、q的值代入F(m)=,再比較大小即可.
解:(1)由題意可知:千位一定是1,百位取0,十位上的數(shù)字為:2×1-0=2,個位上的數(shù)字為:2×1+0=2則最小的四位依賴數(shù)是1022;
(2)設(shè)千位數(shù)字是x,百位數(shù)字是y,根據(jù)“依賴數(shù)”定義,
則有:十位數(shù)字是(2x﹣y),個位數(shù)字是(2x+y),
根據(jù)題意得:100y+10(2x﹣y)+2x+y﹣3y=88y+22x=21(4y+x)+(4y+x),
∵21(4y+x)+(4y+x)被7除余3,
∴4y+x=3+7k,(k是非負整數(shù))
∴此方程的一位整數(shù)解為:x=4,y=5(此時2x+y>10,故舍去);x=3,y=7(此時2x﹣y<0,故舍去);x=3,y=0;x=2,y=2;x=1,y=4(此時2x﹣y<0,故舍去);
∴特色數(shù)是3066,2226.
(3)根據(jù)最小分解的定義可知: n越小,p、q越接近,nq﹣np才越小,才是最小分解,此時F(m)=,
由(2)可知:特色數(shù)有3066和2226兩個,
對于3066=613×5+14=61×50+24
∵1×613-1×5>2×61-2×50,
∴3066取最小分解時:n=2,p=50,q=61
∴F(3066)=
對于2226=89×25+14=65×34+24,
∵1×89-1×25>2×65-2×34,
∴2226取最小分解時:n=2,p=34,q=65
∴F(2226)=
∵
故所有“特色數(shù)”的F(m)的最大值為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上的點A表示的數(shù)為6,點B表示的數(shù)為﹣4,點C是AB的中點,動點P從點B出發(fā),以每秒2個單位長度的速度沿數(shù)軸向右勻速運動,設(shè)運動時間為x秒(x>0).
(1)當(dāng)x= 秒時,點P到達點A;
(2)運動過程中點P表示的數(shù)是 (用含x的代數(shù)式表示);
(3)當(dāng)P,C之間的距離為2個單位長度時,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一些半徑相同的小圓按如圖所示的規(guī)律擺放,第1個圖形有4個小圓,第2個圖形有8個小圓,第3個圖形有14個小圓,…,依次規(guī)律,第6個圖形的小圓個數(shù)是( )
A. 56 B. 54 C. 44 D. 42
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖1,AD是△ABC的角平分線,且AD=BD,
(1)求證:△CDA∽△CAB;
(2)若AD=6,CD=5,求AC的值;
(3)如圖2,延長AD至E,使AE=AB,過E點作EF∥AB,交AC于點F,試探究線段EF
與線段AD的大小關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)癮低齡化問題已經(jīng)引起社會各界的高度關(guān)注,有關(guān)部門在全國范圍內(nèi)對12﹣35歲的網(wǎng)癮人群進行了簡單的隨機抽樣調(diào)查,繪制出以下兩幅統(tǒng)計圖.
請根據(jù)圖中的信息,回答下列問題:
(1)這次抽樣調(diào)查中共調(diào)查了 人,并請補全條形統(tǒng)計圖;
(2)扇形統(tǒng)計圖中18﹣23歲部分的圓心角的度數(shù)是 度;
(3)據(jù)報道,目前我國12﹣35歲“網(wǎng)癮人數(shù)”約為2000萬,請估計其中12﹣17歲的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點,且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=,AF=,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】墊球是排球隊常規(guī)訓(xùn)練的重要項目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測試的成績.測試規(guī)則為連續(xù)接球10個,每墊球到位1個記1分.
(1)寫出運動員甲測試成績的眾數(shù)為_________;運動員乙測試成績的中位數(shù)為_________;運動員丙測試成績的平均數(shù)為_________;
(2)經(jīng)計算三人成績的方差分別為S甲2=0.8、S乙2=0.4、S丙2=0.8,請綜合分析,在他們?nèi)酥羞x擇一位墊球成績優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認(rèn)為選誰更合適?為什么?
(3)甲、乙、丙三人相互之間進行墊球練習(xí),每個人的球都等可能的傳給其他兩人,球最先從甲手中傳出,第三輪結(jié)束時球回到甲手中的概率是多少?(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在4×4的正方形網(wǎng)格中,△ABC的頂點都在格點上,下列結(jié)論錯誤的是( 。
A. AB=5 B. ∠C=90° C. AC=2 D. ∠A=30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時出發(fā),勻速行駛,設(shè)行駛的時間為x(時),兩車之間的距離為y(千米),圖中的折線表示從兩車出發(fā)至快車到達乙地過程中y與x之間的函數(shù)關(guān)系,已知兩車相遇時快車比慢車多行駛40千米,快車到達乙地時,慢車還有( )千米到達甲地.
A. 70 B. 80 C. 90 D. 100
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com