【題目】如圖,ABC中,∠ACB90°,ACBC,將ABC沿EF折疊,使點A落在直角邊BC上的D點處,設(shè)EFAB、AC邊分別交于點E、點F,如果折疊后CDFBDE均為等腰三角形,那么∠B_____

【答案】45°30°

【解析】

先確定CDF是等腰三角形,得出∠CFD=CDF=45°,因為不確定BDE是以那兩條邊為腰的等腰三角形,故需討論,①DE=DB,②BD=BE,③DE=BE,然后分別利用角的關(guān)系得出答案即可.

∵△CDF中,∠C90°,且CDF是等腰三角形,

CFCD,

∴∠CFD=∠CDF45°

設(shè)∠DAEx°,由對稱性可知,AFFD,AEDE,

∴∠FDACFD22.5°,∠DEB2x°,

分類如下:

①當(dāng)DEDB時,∠B=∠DEB2x°,

由∠CDE=∠DEB+B,得45°+22.5°+x4x,

解得:x22.5°

此時∠B2x45°;

見圖形(1),說明:圖中AD應(yīng)平分∠CAB

②當(dāng)BDBE時,則∠B=(180°4x°,

由∠CDE=∠DEB+B得:45°+22.5°+x2x+180°4x,

解得x37.5°,

此時∠B=(1804x°30°

圖形(2)說明:∠CAB60°,∠CAD22.5°

DEBE時,則∠B1802x°,

由∠CDE=∠DEB+B得,45°+22.5°+x2x+1802x°

此方程無解.

DEBE不成立.

綜上所述,∠B45°30°

故答案為:45°30°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】溫州市處于東南沿海,夏季經(jīng)常遭受臺風(fēng)襲擊.一次,溫州氣象局測得臺風(fēng)中心在溫州市A的正西方向300千米的B處(如圖),以每小時10千米的速度向東偏南30°的BC方向移動,并檢測到臺風(fēng)中心在移動過程中,溫州市A將受到影響,且距臺風(fēng)中心200千米的范圍是受臺風(fēng)嚴重影響的區(qū)域.則影響溫州市A的時間會持續(xù)多長?( 。

A. 5 B. 6 C. 8 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為1,經(jīng)過點A(2,0)的直線與⊙O相切于點B,與y軸相交于點C.

(1)求AB的長;

(2)如果把直線AC看成一次函數(shù)y=kx+b的圖象,試求k、b.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點.ABC的邊BCx軸上,A、C兩點的坐標(biāo)分別為A0,m)、Cn0),B(﹣5,0),且,點PB出發(fā),以每秒2個單位的速度沿射線BO勻速運動,設(shè)點P運動時間為t秒.

1)求AC兩點的坐標(biāo);

2)連接PA,用含t的代數(shù)式表示POA的面積;

3)當(dāng)P在線段BO上運動時,是否存在一點P,使PAC是等腰三角形?若存在,請寫出滿足條件的所有P點的坐標(biāo)并求t的值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形兩邊長分別是,第三邊的長是一元二次方程的一個實數(shù)根,則此三角形的外接圓半徑為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊ABC中,AM為邊BC上的中線,動點D在直線AM上,以CD為一邊在CD的下方作等邊CDE,設(shè)直線BE與直線AM的交點為O

1)如圖1,點D在線段AM上時,填空:

①線段ADBE的數(shù)量關(guān)系是   ②∠AOB的度數(shù)是   

2)如圖2,當(dāng)動點D在線段MA的延長線上時,試判斷(1)中的結(jié)論是否成立?若成立,請給予證明:若不成立,請寫出新的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我縣古田鎮(zhèn)某紀念品商店在銷售中發(fā)現(xiàn):成功從這里開始的紀念品平均每天可售出20件,每件盈利40元.為了擴大銷售量,增加盈利,盡快減少庫存,該商店在今年國慶黃金周期間,采取了適當(dāng)?shù)慕祪r措施,改變營銷策略后發(fā)現(xiàn):如果每件降價4元,那么平均每天就可多售出8件.商店要想平均每天在銷售這種紀念品上盈利1200元,那么每件紀念品應(yīng)降價多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+500,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%

1)設(shè)小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.

2)當(dāng)銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?

3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?(成本=進價×銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩校參加區(qū)教育局舉辦的學(xué)生英語口語競賽,兩校參賽人數(shù)相等.比賽結(jié)束后,發(fā)現(xiàn)學(xué)生成績分別為7分、8分、9分、10分(滿分為10分).依據(jù)統(tǒng)計數(shù)據(jù)繪制了如圖所示的尚不完整的統(tǒng)計圖表.

甲校成績統(tǒng)計表

分數(shù)

7

8

9

10

人數(shù)

11

0

8

1)在圖①中,“7所在扇形的圓心角等于______;

2)請你將②的統(tǒng)計圖補充完整;

3)經(jīng)計算,乙校的平均分是8.3分,中位數(shù)是8分,請寫出甲校的平均分、中位數(shù);并從平均分和中位數(shù)的角度分析哪個學(xué)校成績較好;

4)如果該教育局要組織8人的代表隊參加市級團體賽,為便于管理,決定從這兩所學(xué)校中的一所挑選參賽選手,請你分析,應(yīng)選哪所學(xué)校?

查看答案和解析>>

同步練習(xí)冊答案