對(duì)面積為1的△ABC逐次進(jìn)行以下操作:第一次操作,分別延長(zhǎng)AB、BC、CA至點(diǎn)A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1;第二次操作,分別延長(zhǎng)A1B1、B1C1、C1A1至點(diǎn)A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,順次連接A2、B2、C2,得到△A2B2C2,記其面積為S2;…;按此規(guī)律繼續(xù)下去,可得到△AnBnCn
(1)求面積S1;(2)求面積Sn

【答案】分析:(1)首先根據(jù)題意,求得S△ABC1=2S△ABC,同理求得S△A1B1C1=19S△ABC,則可求得面積S1的值;
(2)根據(jù)題意發(fā)現(xiàn)規(guī)律:Sn=19nS即可求得答案.
解答:解:連BC1,
∵C1A=2CA,
∴S△ABC1=2S△ABC,
同理:S△A1BC1=2S△ABC1=4S△ABC,
∴S△A1AC1=6S△ABC,
同理:S△A1BB1=S△CB1C1=6S△ABC,
∴S△A1B1C1=19S△ABC,
即S1=19S
∵S=S△ABC=1,
∴S1=19;

(2)同理,S2=19S1=192S,S3=193S
∴Sn=19nS=19n
點(diǎn)評(píng):此題考查了三角形面積之間的關(guān)系.注意找到規(guī)律:Sn=19nS是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,對(duì)面積為s的△ABC逐次進(jìn)行以下操作:
第一次操作,分別延長(zhǎng)AB、BC、CA至點(diǎn)A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1;
第二次操作,分別延長(zhǎng)A1B1、B1C1、C1A1至點(diǎn)A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,B2C1=2B1C1,順次連接A2、B2、C2,得到△A2B2C2,記其面積為S2;
…;
按此規(guī)律繼續(xù)下去,可得到△AnBnCn,則其面積Sn=
19nS

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,對(duì)面積為1的△ABC逐次進(jìn)行以下操作:第一次操作,分別延長(zhǎng)AB、BC、CA至點(diǎn)A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1;第二次操作,分別延長(zhǎng)A1B1、B1C1、C1A1至點(diǎn)A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,順次連接A2、B2、C2,得到△A2B2C2,記其面積為S2;…;按此規(guī)律繼續(xù)下去,可得到△A5B5C5,則其面積S5=
2476099
2476099

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

對(duì)面積為1的△ABC逐次進(jìn)行以下操作:第一次操作,分別延長(zhǎng)AB、BC、CA至點(diǎn)A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1;第二次操作,分別延長(zhǎng)A1B1、B1C1、C1A1至點(diǎn)A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,順次連接A2、B2、C2,得到△A2B2C2,記其面積為S2;…;按此規(guī)律繼續(xù)下去,可得到△AnBnCn
(1)求面積S1;(2)求面積Sn

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面資料:
小明遇到這樣一個(gè)問題:如圖1,對(duì)面積為a的△ABC逐次進(jìn)行以下操作:分別延長(zhǎng)AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1,求S1的值.
小明是這樣思考和解決這個(gè)問題的:如圖2,連接A1C、B1A、C1B,因?yàn)锳1B=2AB,B1C=2BC,C1A=2CA,根據(jù)等高兩三角形的面積比等于底之比,所以SA1BC=SB1CA=SC1AB=2S△ABC=2a,由此繼續(xù)推理,從而解決了這個(gè)問題.

(1)直接寫出S1=
19a
19a
(用含字母a的式子表示).
請(qǐng)參考小明同學(xué)思考問題的方法,解決下列問題:
(2)如圖3,P為△ABC內(nèi)一點(diǎn),連接AP、BP、CP并延長(zhǎng)分別交邊BC、AC、AB于點(diǎn)D、E、F,則把△ABC分成六個(gè)小三角形,其中四個(gè)小三角形面積已在圖上標(biāo)明,求△ABC的面積.
(3)如圖4,若點(diǎn)P為△ABC的邊AB上的中線CF的中點(diǎn),求S△APE與S△BPF的比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

對(duì)面積為1的△ABC進(jìn)行以下操作:分別延長(zhǎng)AB、BC、CA至點(diǎn)A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1、B1、C1,得到△A1B1C1(如圖所示),記其面積為S1.現(xiàn)再分別延長(zhǎng)A1B1、B1C1、C1A1至點(diǎn)A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C11A,順次連接A2、B2、C2,得到△A2B2C2,記其面積為S2,則S2=
361
361

查看答案和解析>>

同步練習(xí)冊(cè)答案