18、如圖,對(duì)面積為s的△ABC逐次進(jìn)行以下操作:
第一次操作,分別延長(zhǎng)AB、BC、CA至點(diǎn)A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1;
第二次操作,分別延長(zhǎng)A1B1、B1C1、C1A1至點(diǎn)A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,B2C1=2B1C1,順次連接A2、B2、C2,得到△A2B2C2,記其面積為S2;
…;
按此規(guī)律繼續(xù)下去,可得到△AnBnCn,則其面積Sn=
19nS
分析:連接A1C,找出延長(zhǎng)各邊后得到的三角形是原三角形的19倍的規(guī)律,利用規(guī)律求延長(zhǎng)第n次后的面積.
解答:解:連接A1C;
△AA1C=3△ABC=3,
△AA1C1=2△AA1C=6,
所以△A1B1C1=6×3+1=19;
同理得△A2B2C2=19×19=361;
△A3B3C3=361×19=6859,
△A4B4C4=6859×19=130321,
△A5B5C5=130321×19=2476099,
從中可以得出一個(gè)規(guī)律,延長(zhǎng)各邊后得到的三角形是原三角形的19倍,所以延長(zhǎng)第n次后,得到△AnBnCn,則其面積Sn=19n•S.
點(diǎn)評(píng):本題的關(guān)鍵是作輔助線,連接A1C,找出延長(zhǎng)各邊后得到的三角形是原三角形的19倍的規(guī)律,利用規(guī)律求延長(zhǎng)第n次后的面積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,對(duì)面積為1的△ABC逐次進(jìn)行以下操作:第一次操作,分別延長(zhǎng)AB,BC,CA至點(diǎn)A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1,B1,C1,得到△A1B1C1,記其面積為S1;第二次操作,分別延長(zhǎng)A1B1,B1C1,C1A1至點(diǎn)A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,順次連接A2,B2,C2,得到△A2B2C2,記其面積為S2;…;按此規(guī)律繼續(xù)下去,可得到△A5B5C5,則其面積S5=
195

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖,對(duì)面積為1的平行四邊形ABCD逐次進(jìn)行以下操作:第一次操作,分別延長(zhǎng)AB,BC,CD,DA至點(diǎn)A1,B1,C1,D1,使得A1B=2AB,B1C=2BC,C1D=2CD,D1A=2AD,順次連接A1,B1,C1,D1,得到平行四邊形A1B1C1D1,記其面積為S1;第二次操作,分別延長(zhǎng)A1B1,B1C1,C1D1、D1A1至點(diǎn)A2,B2,C2,D2,使得A2B1=2A1B1,B2C1=2B1C1,C2D1=2C1D1,D2A1=2A1D1,順次連接A2,B2,C2,D2記其面積為S2;…;按此規(guī)律繼續(xù)下去,可得到平行四邊形A5B5C5D5,則其面積S5=
135

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,對(duì)面積為1的△ABC逐次進(jìn)行以下操作:第一次操作,分別延長(zhǎng)AB、BC、CA至點(diǎn)A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1;第二次操作,分別延長(zhǎng)A1B1、B1C1、C1A1至點(diǎn)A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,順次連接A2、B2、C2,得到△A2B2C2,記其面積為S2;…;按此規(guī)律繼續(xù)下去,可得到△A5B5C5,則其面積S5=
2476099
2476099

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•門頭溝區(qū)一模)如圖,對(duì)面積為1的△ABC逐次進(jìn)行以下操作:第一次操作,分別延長(zhǎng)AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1;第二次操作,分別延長(zhǎng)A1B1,B1C1,C1A1至A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,順次連接A2,B2,C2,得到△A2B2C2,記其面積為S2…,按此規(guī)律繼續(xù)下去,可得到△A5B5C5,則其面積為S5=
2476099
2476099
.第n次操作得到△AnBnCn,則△AnBnCn的面積Sn=
19n
19n

查看答案和解析>>

同步練習(xí)冊(cè)答案