【題目】已知:O是坐標(biāo)原點(diǎn),P(m,n)(m>0)是函數(shù)y=(k>0)上的點(diǎn),過點(diǎn)P作直線PA⊥OP于P,直線PA與x軸的正半軸交于點(diǎn)A(a,0)(a>m).設(shè)△OPA的面積為s,且s=1+.
(1)當(dāng)n=1時(shí),求點(diǎn)A的坐標(biāo);
(2)若OP=AP,求k的值;
(3)設(shè)n是小于20的整數(shù),且k≠,求OP2的最小值.
【答案】(1)A(,0);(2)2;(3)5.
【解析】試題分析:(1)根據(jù)三角形的面積公式得到 而 把代入就可以得到的值.
(2)易證是等腰直角三角形,得到 根據(jù)三角形的面積
就可以解得的值.
(3)易證 根據(jù)相似三角形面積的比等于相似比的平方,就可以得到關(guān)于的方程,從而求出的值.得到的值.
試題解析:過點(diǎn)P作PQ⊥x軸于Q,則PQ=n,OQ=m,
(1)當(dāng)n=1時(shí),
(2)解法一:∵OP=AP,PA⊥OP,
∴△OPA是等腰直角三角形.
即
∴k=2.
解法二:∵OP=AP,PA⊥OP,
∴△OPA是等腰直角三角形.
∴m=n.
設(shè)△OPQ的面積為
則:
即:
∴k=2.
(3)解法一:∵PA⊥OP,PQ⊥OA,
∴△OPQ∽△OAP.
設(shè):△OPQ的面積為,則
即:
化簡得:
∴k=2或 (舍去),
∴當(dāng)n是小于20的整數(shù)時(shí),k=2.
又m>0,k=2,
∴n是大于0且小于20的整數(shù).
當(dāng)n=1時(shí),
當(dāng)n=2時(shí),
當(dāng)n=3時(shí),
當(dāng)n是大于3且小于20的整數(shù)時(shí),
即當(dāng)n=4、5、6…19時(shí), 的值分別是:
∴的最小值是5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線交于點(diǎn)O,點(diǎn)E是矩形外一點(diǎn),,,,連接AE交BD于點(diǎn)F、連接CF.
求證:四邊形BECO是菱形;
填空:若,則線段CF的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=-2x+4與x軸y軸相交于A,B兩點(diǎn),點(diǎn)C在線段AB上,且∠COA=45°.
(1)求點(diǎn)A,B的坐標(biāo);
(2)求△AOC的面積;
(3)直線OC上有一動(dòng)點(diǎn)D,過點(diǎn)D作直線l(不與直線AB重合)與x,y軸分別交于點(diǎn)E,F,當(dāng)△OEF與△ABO全等時(shí),求直線EF的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校八年級(jí)的體育老師為了了解本年級(jí)學(xué)生喜歡球類運(yùn)動(dòng)的情況,抽取了該年級(jí)部分學(xué)生對(duì)籃球、足球、排球、乒乓球的愛好情況進(jìn)行了調(diào)查,并將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計(jì)圖(說明:每位學(xué)生只選一種自己最喜歡的一種球類),請(qǐng)根據(jù)這兩幅圖形解答下列問題:
(1)在本次調(diào)查中,體育老師一共調(diào)查了多少名學(xué)生?
(2)將兩個(gè)不完整的統(tǒng)計(jì)圖補(bǔ)充完整;
(3)求出乒乓球在扇形中所占的圓心角的度數(shù)?
(4)已知該校有760名學(xué)生,請(qǐng)你根據(jù)調(diào)查結(jié)果估計(jì)愛好足球和排球的學(xué)生共計(jì)多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點(diǎn),C、D是l2上的兩點(diǎn),某人在點(diǎn)A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進(jìn)20米到達(dá)點(diǎn)E(點(diǎn)E在線段AB上),測得∠DEB=60°,求C、D兩點(diǎn)間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,,相交于點(diǎn),與相交于點(diǎn),,為的平分線,為的平分線。
(1)若,求的大;
(2)若,求的大小。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,Rt△OAB的頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(3,),點(diǎn)C的坐標(biāo)為(1,0),點(diǎn)P為斜邊OB上的一動(dòng)點(diǎn),則PA+PC的最小值_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,一次函數(shù)y=x+3的圖象分別與x軸、y軸相交于點(diǎn)A、B,且與經(jīng)過點(diǎn)C(2,0)的一次函數(shù)y=kx+b的圖象相交于點(diǎn)D,點(diǎn)D的橫坐標(biāo)為4,直線CD與y軸相交于點(diǎn)E.
(1)直線CD的函數(shù)表達(dá)式為______;(直接寫出結(jié)果)
(2)在x軸上求一點(diǎn)P使△PAD為等腰三角形,直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).
(3)若點(diǎn)Q為線段DE上的一個(gè)動(dòng)點(diǎn),連接BQ.點(diǎn)Q是否存在某個(gè)位置,將△BQD沿著直線BQ翻折,使得點(diǎn)D恰好落在直線AB下方的y軸上?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)C的坐標(biāo)為(0,b)且a、b滿足+|b﹣6|=0,點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度沿著O﹣C﹣B﹣A﹣O的線路移動(dòng).
(1)點(diǎn)B的坐標(biāo)為 ;當(dāng)點(diǎn)P移動(dòng)3.5秒時(shí),點(diǎn)P的坐標(biāo)為 ;
(2)在移動(dòng)過程中,當(dāng)點(diǎn)P到x軸的距離為4個(gè)單位長度時(shí),求點(diǎn)P移動(dòng)的時(shí)間;
(3)在O﹣C﹣B的線路移動(dòng)過程中,是否存在點(diǎn)P使△OBP的面積是10,若存在求出點(diǎn)P移動(dòng)的時(shí)間;若不存在,請(qǐng)說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com