【題目】若拋物線y=x2﹣4x+2﹣t(t為實數(shù))在0<x< 的范圍內與x軸有公共點,則t的取值范圍為( )
A.﹣2<t<2
B.﹣2≤t<2
C.﹣ <t<2
D.t≥﹣2

【答案】B
【解析】解:y=x2﹣4x+2﹣t=(x﹣2)2﹣2﹣t,

拋物線的頂點為(2,﹣2﹣t),

當拋物線與x軸的公共點為頂點時,﹣2﹣t=0,解得t=﹣2,

當拋物線在0<x< 的范圍內與x軸有公共點,

如圖,

﹣t﹣20,解得t>﹣2,則x=0時,y>0,即2﹣t>0,解得t<2;

當x= 時,y>0,即﹣ ﹣t>0,解得t<﹣ ,此時t的范圍為t<﹣ ,

綜上所述,t的范圍為﹣2≤t<2.

所以答案是:B.

【考點精析】掌握拋物線與坐標軸的交點是解答本題的根本,需要知道一元二次方程的解是其對應的二次函數(shù)的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為增強學生的愛國意識,某中學舉辦“愛我中華”朗誦比賽,全校學生都參加,并對表現(xiàn)優(yōu)異的學生進行表彰,設置一、二、三等獎和進步獎共四個獎項,賽后,校統(tǒng)計小組隨機抽取了九年級兩個班級,并將這兩個班的獲獎情況繪制成以下兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中的信息,解答下列問題:

(1)求本次調查抽取的學生人數(shù),并補全條形統(tǒng)計圖;
(2)在扇形統(tǒng)計圖中,表示“三等獎”的扇形所對應的圓心角度數(shù)是 72 °.
(3)若該校共有2600名學生,試估計得獎的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們經常利用圖形描述問題和分析問題.借助直觀的幾何圖形,把問題變得簡明、形象,有助于探索解決問題的思路.

1)在整式乘法公式的學習中,小明為了解釋某一公式,構造了幾何圖形,如圖1所示,先畫了邊長為a,b的大小兩個正方形,再延長小正方形的兩邊,把大正方形分割為四部分,并分別標記為Ⅰ,Ⅱ,Ⅲ,Ⅳ,然后補出圖形Ⅴ.顯然圖形Ⅴ與圖形Ⅳ的面積相等,所以圖形Ⅰ,Ⅱ,Ⅴ的面積和與圖形Ⅰ,Ⅱ,Ⅳ的面積和相等,從而驗證了公式.則小明驗證的公式是 ;

2)計算:(x+a)(x+b= ;請畫圖說明這個等式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】端午節(jié)期間,某商場為了吸引顧客,設立了一個可以自由轉動的轉盤(轉盤被平均分成16),并規(guī)定:顧客每購買100元的商品,就能獲得一次轉轉盤的機會,如果轉盤停止后,指針正好對準紅色、黃色或綠色區(qū)域,顧客就可以分別獲得玩具熊、童話書、水彩筆.小明和媽媽購買了125元的商品,請你回答下列問題:

(1)小明獲得獎品的概率是多少?

(2)小明獲得玩具熊、童話書、水彩筆的概率分別是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某造紙企業(yè)為了更好地處理污水問題,決定購買10臺新型污水處理設備.甲、乙兩種型號的設備可選,其中每臺的價格,月處理污水量如表:

A

B

價格(萬元/

10

8

處理污水量(噸/月)

180

150

1)經預算:該企業(yè)購買污水處理設備的資金不超過85萬元,你認為該企業(yè)有哪幾種購買方案.

2)在(1)的條件下,若每月需要處理的污水不低于1530噸,為了節(jié)約資金,請你為該企業(yè)設計一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校組織了主題為“讓勤儉節(jié)約成為時尚”的電子小組作品征集活動,現(xiàn)從中隨機抽取部分作品,對其份數(shù)和成績(十分制)進行整理,制成了如下兩幅不完整的統(tǒng)計圖.

(1)求本次抽取的作品數(shù)量并補全條形統(tǒng)計圖;
(2)此次被抽取的作品的平均得分是分.
(3)若該校共征集到800份作品,請估計8分的作品約有多少份?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1;

2m2m4+(﹣m32;

3)(x+y)(2x3y);

4)(x+32﹣(x+1)(x1).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線

1)如圖1,直接寫出,之間的數(shù)量關系.

2)如圖2,,分別平分,那么有怎樣的數(shù)量關系?請說明理由.

3)若點E的位置如圖3所示,,仍分別平分,,請直接寫出的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,矩形OABC的兩條邊OAOC分別在y軸和x軸上,已知點A0,3)、點C(-4,0).

1)若把矩形OABC沿直線DE折疊,使點C落在點A處,直線DEOC、AC、AB的交點分別為D、F、E,求折痕DE的長;

2)若點Px軸上,在平面內是否存在點Q,使以PD、E、Q為頂點的四邊形是菱形?若存在,則請直接寫出點Q的坐標;若不存在,請說明理由;

3)如圖2,若MAC邊上的一動點,在OA上取一點N0,1),將矩形OABC繞點O順時針旋轉一周,在旋轉的過程中,M的對應點為M1,請直接寫出NM1的最大值和最小值.

查看答案和解析>>

同步練習冊答案