【題目】如圖,點EDBC的邊DB上,點ADBC內部,∠DAE=BAC=90°,AD=AE,AB=AC.給出下列結論:

BD=CE;②∠ABD+ECB=45°;BDCE;BE2=2(AD2+AB2)﹣CD2.其中正確的是( 。

A. ①②③④ B. ②④ C. ①②③ D. ①③④

【答案】A

【解析】

只要證明DAB≌△EAC,利用全等三角形的性質即可一一判斷;

∵∠DAE=BAC=90°,

∴∠DAB=EAC

AD=AE,AB=AC,

∴△DAB≌△EAC,

BD=CE,ABD=ECA,故①正確,

∴∠ABD+ECB=ECA+ECB=ACB=45°,故②正確,

∵∠ECB+EBC=ABD+ECB+ABC=45°+45°=90°,

∴∠CEB=90°,即CEBD,故③正確,

BE2=BC2-EC2=2AB2-(CD2-DE2)=2AB2-CD2+2AD2=2(AD2+AB2)-CD2.故④正確,

故選:A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓的直徑,AC是一條弦,DAC的中點,DEAB于點EDEAC于點F,DBAC于點G,若,則=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線 AB與坐標軸交與點, 動點P沿路線運動.

(1)求直線AB的表達式;

(2)當點POB上,使得AP平分時,求此時點P的坐標;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某體育用品商場預測某品牌運動服能夠暢銷,就用32000元購進了一批這種運動服,上市后很快脫銷,商場又用68000元購進第二批這種運動服,所購數(shù)量是第一批購進數(shù)量的2倍,但每套進價多了10元.

1)該商場兩次共購進這種運動服多少套?

2)如果這兩批運動服每套的售價相同,且全部售完后總利潤不低于20%,那么每套售價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】生活中,有人喜歡把傳送的便條折成形狀,折疊過程按圖的順序進行(其中陰影部分表示紙條的反面):

如果由信紙折成的長方形紙條(圖①)厘米,分別回答下列問題:

1)如圖①、圖②,如果長方形紙條的寬為厘米,并且開始折疊時厘米,那么在圖②中,____厘米.

2)如圖②,如果長方形紙條的寬為厘米,現(xiàn)在不但要折成圖②的形狀,還希望紙條兩端超出點的部分相等,使圖②. 是軸對稱圖形,______厘米.

3)如圖④,如果長方形紙條的寬為厘米,希望紙條兩端超出點的部分相等,即最終圖形是軸對稱圖形,試求在開始折疊時起點與點的距離(結果用表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的圖形中,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為10,正方形A、BC、D的面積之和為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,四邊形ABCD是矩形,把△ACD沿AC折疊到△ACD′,AD′與BC交于點E,若AD=4,DC=3,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】jiǒng)是一個風靡網(wǎng)絡的流行詞,像一個人臉郁悶的神情.如圖所示,一張邊長為的正方形的紙片,剪去兩個一樣的小直角三角形和一個長方形得到一個字圖案(陰影部分).設剪去的小長方形長和寬分別為、,剪去的兩個小直角三角形的兩直角邊長也分別為、.

1)用含有、的式子表示圖中(陰影部分)的面積;

2)當,時,求此時(陰影部分)的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=CD,對角線AC,BD相交于點O,AEBD于點E,CFBD于點F,連接AF,CE,若DE=BF,則下列結論:CF=AE;OE=OF;四邊形ABCD是平行四邊形;圖中共有四對全等三角形.其中正確結論的個數(shù)是

A.4 B.3 C2 D.1

查看答案和解析>>

同步練習冊答案