【題目】課本的作業(yè)題中有這樣一道題:把一張頂角為36°的等腰三角形紙片剪兩刀,分成3張小紙片,使每張小紙片都是等腰三角形,你能辦到嗎?請畫示意圖說明剪法. 我們有多少種剪法,圖1是其中的一種方法:

定義:如果兩條線段將一個三角形分成3個等腰三角形,我們把這兩條線段叫做這個三角形的三分線.
(1)請你在圖2中用兩種不同的方法畫出頂角為45°的等腰三角形的三分線,并標注每個等腰三角形頂角的度數(shù);(若兩種方法分得的三角形成3對全等三角形,則視為同一種)
(2)△ABC中,∠B=30°,AD和DE是△ABC的三分線,點D在BC邊上,點E在AC邊上,且AD=BD,DE=CE,設(shè)∠C=x°,試畫出示意圖,并求出x所有可能的值;
(3)如圖3,△ABC中,AC=2,BC=3,∠C=2∠B,請畫出△ABC的三分線,并求出三分線的長.

【答案】
(1)解:如圖2作圖,


(2)解:如圖3 ①、②作△ABC.

①當AD=AE時,

∵2x+x=30+30,

∴x=20.

②當AD=DE時,

∵30+30+2x+x=180,

∴x=40.

所以∠C的度數(shù)是20°或40°


(3)解:如圖4,CD、AE就是所求的三分線.

設(shè)∠B=α,則∠DCB=∠DCA=∠EAC=α,∠ADE=∠AED=2α,

此時△AEC∽△BDC,△ACD∽△ABC,

設(shè)AE=AD=x,BD=CD=y,

∵△AEC∽△BDC,

∴x:y=2:3,

∵△ACD∽△ABC,

∴2:x=(x+y):2,

所以聯(lián)立得方程組 ,

解得 ,

即三分線長分別是


【解析】(1)45°自然想到等腰直角三角形,過底角一頂點作對邊的高,發(fā)現(xiàn)形成一個等腰直角三角形和直角三角形.直角三角形斜邊的中線可形成兩個等腰三角形,則易得一種情況.第二種情形可以考慮題例中給出的方法,試著同樣以一底角作為新等腰三角形的底角,則另一底腳被分為45°和22.5°,再以22.5°分別作為等腰三角形的底角或頂角,易得其中作為底角時所得的三個三角形恰都為等腰三角形.即又一三分線作法.(2)用量角器,直尺標準作30°角,而后確定一邊為BA,一邊為BC,根據(jù)題意可以先固定BA的長,而后可確定D點,再標準作圖實驗﹣﹣分別考慮AD為等腰三角形的腰或者底邊,兼顧A、E、C在同一直線上,易得2種三角形ABC.根據(jù)圖形易得x的值.(3)因為∠C=2∠B,作∠C的角平分線,則可得第一個等腰三角形.而后借用圓規(guī),以邊長畫弧,根據(jù)交點,尋找是否存在三分線,易得如圖4圖形為三分線.則可根據(jù)外角等于內(nèi)角之和及腰相等等情況列出等量關(guān)系,求解方程可知各線的長.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明隨機調(diào)查了若干市民租用公共自行車的騎車時間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如圖統(tǒng)計圖,請根據(jù)圖中信息,解答下列問題:

(1)這次被調(diào)查的總?cè)藬?shù)是多少?
(2)試求表示A組的扇形圓心角的度數(shù),并補全條形統(tǒng)計圖.
(3)如果騎自行車的平均速度為12km/h,請估算,在租用公共自行車的市民中,騎車路程不超過6km的人數(shù)所占的百分比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,汽車在東西向的公路l上行駛,途中A,B,C,D四個十字路口都有紅綠燈.AB之間的距離為800米,BC為1000米,CD為1400米,且l上各路口的紅綠燈設(shè)置為:同時亮紅燈或同時亮綠燈,每次紅(綠)燈亮的時間相同,紅燈亮的時間與綠燈亮的時間也相同.若綠燈剛亮時,甲汽車從A路口以每小時30千米的速度沿l向東行駛,同時乙汽車從D路口以相同的速度沿l向西行駛,這兩輛汽車通過四個路口時都沒有遇到紅燈,則每次綠燈亮的時間可能設(shè)置為(
A.50秒
B.45秒
C.40秒
D.35秒

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)了統(tǒng)計知識后,小剛就本班同學(xué)上學(xué)“喜歡的出行方式”進行了一次調(diào)查.圖(1)和圖(2)是他根據(jù)采集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息解答以下問題:
(1)補全條形統(tǒng)計圖,并計算出“騎車”部分所對應(yīng)的圓心角的度數(shù);
(2)如果全年級共600名同學(xué),請估算全年級步行上學(xué)的學(xué)生人數(shù);
(3)若由3名“喜歡乘車”的學(xué)生,1名“喜歡步行”的學(xué)生,1名“喜歡騎車”的學(xué)生組隊參加一項活動,欲從中選出2人擔任組長(不分正副),列出所有可能的情況,并求出2人都是“喜歡乘車”的學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作為寧波市政府民生實事之一的公共自行車建設(shè)工作已基本完成,某部門對今年4月份中的7天進行了公共自行車日租車量的統(tǒng)計,結(jié)果如圖:
(1)求這7天日租車量的眾數(shù)、中位數(shù)和平均數(shù);
(2)用(1)中的平均數(shù)估計4月份(30天)共租車多少萬車次;
(3)市政府在公共自行車建設(shè)項目中共投入9600萬元,估計2014年共租車3200萬車次,每車次平均收入租車費0.1元,求2014年租車費收入占總投入的百分率(精確到0.1%).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D是AB中點,聯(lián)結(jié)CD.
(1)若AB=10且∠ACD=∠B,求AC的長.
(2)過D點作BC的平行線交AC于點E,設(shè) = , = ,請用向量 、 表示 (直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC=3,BC=2,點D是邊AB上的動點,過點D作DE∥BC,交邊AC于點E,點Q是線段DE上的點,且QE=2DQ,連接BQ并延長,交邊AC于點P.設(shè)BD=x,AP=y.
(1)求y關(guān)于x的函數(shù)解析式及定義域;
(2)當△PQE是等腰三角形時,求BD的長;
(3)連接CQ,當∠CQB和∠CBD互補時,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知頂點為A(2,﹣1)的拋物線經(jīng)過點B(0,3),與x軸交于C、D兩點(點C在點D的左側(cè));
(1)求這條拋物線的表達式;
(2)聯(lián)結(jié)AB、BD、DA,求△ABD的面積;
(3)點P在x軸正半軸上,如果∠APB=45°,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,AB=AC,tan∠B=2,BC=4,D為BC邊的中點,點E在BC邊的延長線上,且CE=BC,連接AE,F(xiàn)為線段AE的中點
(1)求線段CF的長;
(2)求∠CAE的正弦值.

查看答案和解析>>

同步練習冊答案