【題目】閱讀材料:在數(shù)軸上點(diǎn)、分別表示數(shù)、,則、兩點(diǎn)之間的距離.
請(qǐng)回答下列問題:
()數(shù)軸上表示和的兩點(diǎn)之間的距離是__________.?dāng)?shù)軸上表示數(shù)和的兩點(diǎn)之間的距離表示為__________.?dāng)?shù)軸上表示數(shù)__________和__________的兩點(diǎn)之間的距離表示為.
()七年級(jí)研究性學(xué)習(xí)小組在數(shù)學(xué)老師指導(dǎo)下,對(duì)式子進(jìn)行探究:.
①當(dāng)表示數(shù)的點(diǎn)在與之間移動(dòng)時(shí),的值總是一個(gè)固定的值為:__________.(直接寫出結(jié)果)
②要使,數(shù)軸上滿足條件的點(diǎn)表示的數(shù)字是:__________(直接寫出結(jié)果).
【答案】(),,,;()①5;②或
【解析】
(1)代入|a-b|求解,由兩點(diǎn)之間的距離用絕對(duì)值的表達(dá)式表示,由絕對(duì)值的定義求解即可,
(2)①根據(jù)絕對(duì)值的性質(zhì)去掉絕對(duì)值符號(hào),然后計(jì)算即可;
②分兩種情況討論:這個(gè)點(diǎn)在3的左邊和-2的右邊,再根據(jù)①的結(jié)論列式計(jì)算即可.
()數(shù)軸上表示和的兩點(diǎn)之間的距離是:;
數(shù)軸上表示數(shù)和的兩點(diǎn)之間的距離表示為:;
數(shù)軸上表示數(shù)和的兩點(diǎn)之間的距離表示為.
()①當(dāng)時(shí),,
當(dāng)時(shí),,
當(dāng)時(shí),,
當(dāng)表示數(shù)的點(diǎn)在與之間移動(dòng)時(shí),的值總是一個(gè)固定的值為:5;
②由①當(dāng)時(shí),,解得:,
當(dāng)時(shí),,解得:
要使,數(shù)軸上滿足條件的點(diǎn)表示的數(shù)字是:或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(k為常數(shù),且k>0)與x軸的交點(diǎn)為A、B,與y軸的交點(diǎn)為C,經(jīng)過點(diǎn)B的直線與拋物線的另一個(gè)交點(diǎn)為D.
(1)若點(diǎn)D的橫坐標(biāo)為x= -4,求這個(gè)一次函數(shù)與拋物線的解析式;
(2)若直線m平行于該拋物線的對(duì)稱軸,并且可以在線段AB間左右移動(dòng),它與直線BD和拋物線分別交于點(diǎn)E、F,求當(dāng)m移動(dòng)到什么位置時(shí),EF的值最大,最大值是多少?
(3)問原拋物線在第一象限是否存在點(diǎn)P,使得△APB∽△ABC?若存在,請(qǐng)求出這時(shí)k的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年5月14日至15日,“一帶一路”國(guó)際合作高峰論壇在北京舉行,本屆論壇期間,中國(guó)同30多個(gè)國(guó)家簽署經(jīng)貿(mào)合作協(xié)議,某廠準(zhǔn)備生產(chǎn)甲、乙兩種商品共8萬(wàn)件銷往“一帶一路”沿線國(guó)家和地區(qū). 已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.
(1)甲種商品與乙種商品的銷售單價(jià)各多少元?
(2)若甲、乙兩種商品的銷售總收入不低于5400萬(wàn)元,則至少銷售甲種商品多少萬(wàn)件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校計(jì)劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法.為提前了解學(xué)生的選修情況,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對(duì)調(diào)查結(jié)果進(jìn)行了整理,繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給信息解答下列問題:
(1)本次調(diào)查的學(xué)生共有 人,在扇形統(tǒng)計(jì)圖中,m的值是 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在被調(diào)查的學(xué)生中,選修書法的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書法活動(dòng),請(qǐng)直接寫出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,銳角△ABC內(nèi)接于⊙O,若⊙O的半徑為6,sinA=,求BC的長(zhǎng).
【答案】BC=8.
【解析】試題分析:通過作輔助線構(gòu)成直角三角形,再利用三角函數(shù)知識(shí)進(jìn)行求解.
試題解析:作⊙O的直徑CD,連接BD,則CD=2×6=12.
∵
∴
∴
點(diǎn)睛:直徑所對(duì)的圓周角是直角.
【題型】解答題
【結(jié)束】
22
【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于A(2,m),B(n,﹣2)兩點(diǎn).過點(diǎn)B作BC⊥x軸,垂足為C,且S△ABC=5.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請(qǐng)直接寫出不等式k1x+b>的解集;
(3)若P(p,y1),Q(﹣2,y2)是函數(shù)y=圖象上的兩點(diǎn),且y1≥y2,求實(shí)數(shù)p的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為4的正方形紙片沿折疊,點(diǎn)落在邊上的點(diǎn)處,點(diǎn)與點(diǎn)重合, 與交于點(diǎn),取的中點(diǎn),連接,則的周長(zhǎng)最小值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)正方體的表面展開圖,請(qǐng)回答下列問題:
(1)與面B、C相對(duì)的面分別是 ;
(2)若A=a3+a2b+3,B=a2b﹣3,C=a3﹣1,D=﹣(a2b﹣6),且相對(duì)兩個(gè)面所表示的代數(shù)式的和都相等,求E、F分別代表的代數(shù)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn)A(,n)和B.
(1)求k的值和點(diǎn)B的坐標(biāo);
(2)如果P是x軸上一點(diǎn),且AP=AB,直接寫出點(diǎn)P的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人分別騎自行車和摩托車沿相同路線由A地到相距80千米的B地,行駛過程中的函數(shù)圖象如圖所示,請(qǐng)根據(jù)圖象回答下列問題:
(1)甲先出發(fā)______小時(shí)后,乙才出發(fā);大約在甲出發(fā)______小時(shí)后,兩人相遇,這時(shí)他們離A地_______千米.
(2)兩人的行駛速度分別是多少?
(3)分別寫出表示甲、乙的路程y(千米)與時(shí)間x(小時(shí))之間的函數(shù)表達(dá)式(不要求寫出自變量的取值范圍).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com