分析 (1)由圓周角定理可知△ABC為直角三角形,利用勾股定理可求得BC;
(2)由條件可知D為$\widehat{AB}$的中點(diǎn),則可知AD=BD,利用勾股定理可求得BD的長(zhǎng).
解答 解:
(1)∵AB為直徑,
∴∠ACB=90°,
∴BC=$\sqrt{A{B}^{2}-A{C}^{2}}$=$\sqrt{1{0}^{2}-{5}^{2}}$=5$\sqrt{3}$;
(2)如圖,連接BD,同理可知∠ADB=90°,
∵CD平分∠ACB,
∴∠ACD=∠BCD,
∴AD=BD,
∵AD2+BD2=AB2,
∴2BD2=100,解得BD=5$\sqrt{2}$.
點(diǎn)評(píng) 本題主要考查圓周角定理,掌握直徑所對(duì)的圓周角為直角是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | m4+m2=m6 | B. | 4m4n÷2m3=2m | C. | (-2m2n)2=4m4n2 | D. | mn•2m2n3=4m3n4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com