【題目】正方形ABCD的邊長為4,點E在對角線BD上,且∠BAE=22.5°,EF⊥AB于F,則EF的長為

【答案】4﹣2
【解析】解:在正方形ABCD中,∠ABD=∠ADB=45°,

∵∠BAE=22.5°,

∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,

在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,

∴∠DAE=∠AED,

∴AD=DE=4,

∵正方形的邊長為4,

∴BD=4

∴BE=BD﹣DE=4 ﹣4,

∵EF⊥AB,∠ABD=45°,

∴△BEF是等腰直角三角形,

∴EF= BE= ×(4 ﹣4)=4﹣2

所以答案是:4﹣2

【考點精析】認(rèn)真審題,首先需要了解角平分線的性質(zhì)定理(定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上),還要掌握勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A、BC是數(shù)軸上三點,O為原點.點C對應(yīng)的數(shù)為6BC4,AB12

1)求點A、B對應(yīng)的數(shù);

2)動點PQ分別同時從AC出發(fā),分別以每秒6個單位和3個單位的速度沿數(shù)軸正方向運動.MAP的中點,NCQ上,且CNCQ,設(shè)運動時間為tt0).

①求點M、N對應(yīng)的數(shù)(用含t的式子表示); t為何值時,OM2BN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,ABAC,∠ABC=70°

(1)用直尺和圓規(guī)作∠ABC的平分線BDAC于點D(保留作圖痕跡,不要求寫作法)

(2)在(1)的條件下,∠BDC   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,火車站、碼頭分別位于A,B兩點,直線a和b分別表示鐵路與河流.

(1)從火車站到碼頭怎樣走最近,畫圖并說明理由;

(2)從碼頭到鐵路怎樣走最近,畫圖并說明理由;

(3)從火車站到河流怎樣走最近,畫圖并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E,F分別為邊ABCD的中點,連接DE、BFBD

1)求證:△ADE≌△CBF

2)若AD⊥BD,則四邊形BFDE是什么特殊四邊形?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年“五一”假期期間,某超市開展有獎促銷活動,凡在超市購物的顧客均有轉(zhuǎn)動圓盤的機(jī)會(如圖),如果規(guī)定當(dāng)圓盤停下來時指針指向8就中一等獎,指向26就中二等獎,指向135就中紀(jì)念獎;指向其余數(shù)字不中獎.

1)轉(zhuǎn)動轉(zhuǎn)盤中一等獎、二等獎、三等獎的概率是分別是多少?

2)顧客中獎的概率是多少?

3)“五一”這天有1800人參與這項活動,估計獲得一等獎的人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD(AD>AB)中,將它折疊,使點A與點C重合,折痕EF交AD于點E,交BC于點F,交AC于點O,連結(jié)AF,CE.

(1)求證:四邊形AFCE是菱形;

(2)若AE=8,△ABF的面積為9,求AB+BF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ab,下列變形正確的有( 。﹤.

a+cb+cacbc;③3a3b;acbc;

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x,y的方程組,其中-3≤a≤1,給出下列結(jié)論:當(dāng)a=1時,方程組的解也是方程xy=4a的解;當(dāng)a=2時,xy的值互為相反數(shù);x≤1,則1≤y≤4;是方程組的解,其中正確的是(

A.①②B.③④C.①②③D.①②③④

查看答案和解析>>

同步練習(xí)冊答案