【題目】如圖,已知△ABC與△CDE均是等邊三角形,點B、C、E在同一條直線上,AE與BD交于點O,AE與CD交于點G,AC與BD交于點F,連接OC、FG,則下列結(jié)論:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.其中正確結(jié)論的個數(shù)為
A. 1 B. 2 C. 3 D. 4
【答案】D
【解析】
根據(jù)題意,結(jié)合圖形,對選項一一求證,即可得出正確選項.
(1)△ABC和△DCE均是等邊三角形,點B,C,E在同一條直線上,∴AC=BC,EC=DC,∠ACB=∠DCE=60°,∴∠ACE=∠BCD=120°.
在△BCD和△ACE中,∵,∴△BCD≌△ACE,∴AE=BD,故結(jié)論①正確;
(2)∵△BCD≌△ECA,∴∠GAC=∠FBC.
又∵∠ACG=∠BCF=60°,AC=BC,∴△ACG≌△BCF,∴AG=BF,故結(jié)論②正確;
(3)∵△ACG≌△BCF,∴CG=CF.
∵∠ACB=∠DCE=60°,∴∠ACD=60°,∴△FCG為等邊三角形,∴∠FGC=60°,∴∠FGC=∠DCE,∴FG∥BE,故結(jié)論③正確;
(4)過C作CN⊥AE于N,CZ⊥BD于Z,則∠CNE=∠CZD=90°.
∵△ACE≌△BCD,∴∠CDZ=∠CEN.
在△CDZ和△CEN中,,∴△CDZ≌△CEN,∴CZ=CN.
∵CN⊥AE,CZ⊥BD,∴∠BOC=∠EOC,故結(jié)論④正確.
綜上所述:四個結(jié)論均正確.
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四個均由十六個小正方形組成的正方形網(wǎng)格中,各有一個三角形ABC,那么這四個三角形中,不是直角三角形的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∠A′B′C′可以由△ABC繞點C順時針旋轉(zhuǎn)得到,其中點A′與點A是對應(yīng)點,點B′與點B是對應(yīng)點,連接AB′,且A、B′、A′在同一條直線上,則AA′的長為( )
A.4
B.6
C.3
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,點C是 的中點,∠COB=60°,過點C作CE⊥AD,交AD的延長線于點E
(1)求證:CE為⊙O的切線;
(2)判斷四邊形AOCD是否為菱形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列方程,是一元二次方程的是( )
①3x2+x=20,②2x2﹣3xy+4=0,③x2 =4,④x2=0,⑤x2﹣3x﹣4=0.
A.①②
B.①②④⑤
C.①③④
D.①④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)①若有意義,則化簡= .
②化簡:a2= .
(2)已知|7﹣9m|+(n﹣3)2=9m﹣7﹣,求(n﹣m)2018.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com