【題目】已知:如圖,在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點D,DE⊥AC,垂足為點E.

(1)求證:點DAB的中點;

(2)判斷DE⊙O的位置關系,并證明你的結論;

3)若O的直徑為18,cosB=,求DE的長.

【答案】(1)證明見解析;(2DE是O的切線,證明見解析;(3DE=

【解析】1)證明:連接AD

∵AB為半圓O的直徑,

∴AD⊥BC

∵AB=AC

DBC的中點

(2)解:相切

連接OD

∵BD=CD,OA=OB

∴OD∥AC

∵DE⊥AC

∴DE⊥OD

∴DE⊙O相切

3∵AB為半圓O的直徑

∴∠ADB=900

Rt△ADB

∵cosB=

∴BD=3

∵CD=3

Rt△ADB

∴cosC=

∴CE=1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,邊的垂直平分線于點邊的垂直平分線于點,相交于點,聯(lián)結、,若的周長為,的周長為

1)求線段的長;

2)聯(lián)結,求線段的長;

3)若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某教師為了對學生零花錢的使用進行教育指導,對全班50名學生每人一周內的零花錢數(shù)額進行了調查統(tǒng)計,并繪制了統(tǒng)計表如下:

零花錢數(shù)額(元)

5

10

15

20

學生個數(shù)(個)

a

15

20

5

請根據(jù)表中的信息,回答以下問題.

1)求a的值;

2)求這50名學生每人一周內的零花錢額的眾數(shù)、中位數(shù)和平均數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題的逆命題成立的是( 。

A.全等三角形的對應角相等

B.若三角形的三邊滿足,則該三角形是直角三角形

C.對頂角相等

D.同位角互補,兩直線平行

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,DE∥AB.請根據(jù)已知條件進行推理,分別得出結論,并在括號內注明理由.

(1)∵DE∥AB,( 已知 )

∴∠2=   . (  ,  

(2)∵DE∥AB,(已知 )

∴∠3=   .(  ,  

(3)∵DE∥AB(已知 ),

∴∠1+   =180°.(  ,  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,二次函數(shù)y1=(x﹣2)(x﹣4)的圖象與x軸交于A、B兩點(點A在點B的左側),其對稱軸l與x軸交于點C,它的頂點為點D.

(1)寫出點D的坐標

(2)點P在對稱軸l上,位于點C上方,且CP=2CD,以P為頂點的二次函數(shù)y2=ax2+bx+c(a≠0)的圖象過點A.

①試說明二次函數(shù)y2=ax2+bx+c(a≠0)的圖象過點B;

②點R在二次函數(shù)y1=(x﹣2)(x﹣4)的圖象上,到x軸的距離為d,當點R的坐標為 時,二次函數(shù)y2=ax2+bx+c(a≠0)的圖象上有且只有三個點到x軸的距離等于2d;

③如圖2,已知0<m<2,過點M(0,m)作x軸的平行線,分別交二次函數(shù)y1=(x﹣2)(x﹣4)y2=ax2+bx+c(a≠0)的圖象于點E、F、G、H(點E、G在對稱軸l左側),過點H作x軸的垂線,垂足為點N,交二次函數(shù)y1=(x﹣2)(x﹣4)的圖象于點Q,若△GHN∽△EHQ,求實數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】張明和李強兩名運動愛好者周末相約到東湖綠道進行跑步鍛煉.(1)周日早上6點,張明和李強同時從家出發(fā),分別騎自行車和步行到離家距離分別為4.5千米和1.2千米的綠道落雁島入口匯合,結果同時到達,且張明每分鐘比李強每分鐘多行220米,求張明和李強的速度分別是多少米/分?

(1)兩人到達綠道后約定先跑 6 千米再休息,李強的跑步速度是張明跑步速度的m倍,兩人在同起點,同時出發(fā),結果李強先到目的地n分鐘.

①當m=12,n=5時,求李強跑了多少分鐘?

張明的跑步速度為 米/分(直接用含m,n的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1 2

3 4

5 6

7 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AOB=30,M、N分別是射線OBOA上的動點,P為∠AOB內一點,OP8,PMN的周長的最小值=___________.

查看答案和解析>>

同步練習冊答案