如圖所示,P是⊙O外一點,PA是⊙O的切線,A是切點,B是⊙O 上一點,且PA=PB,連接AO、BO、AB,并延長BO與切線PA相交于點Q.

(1)求證:PB是⊙O的切線;

(2)求證:AQ•PQ=OQ•BQ;

(3)設∠AOQ=α,若cosα= ,OQ=15,求AB的長.

 

 

[來源:ZXXK]

 

 

【答案】

解:(1)證明:連接OP,與AB交與點C.

∵PA=PB,OA=OB,OP=OP,

∴△OAP≌△OBP(SSS),

∴∠OBP=∠OAP,

∵PA是⊙O的切線,A是切點,

∴∠OAP=90°,

∴∠OBP=90°,即PB是⊙O的切線;

 

(2)∵∠Q=∠Q,∠OAQ=∠QBP=90°,

∴△QAO∽△QBP,[來源:學+科+網(wǎng)Z+X+X+K]

,即AQ•PQ=OQ•BQ;

 

(3)在Rt△OAQ中,∵OQ=15,cosα=

∴OA=12,AQ=9,

∴QB=27;

= ,

∴PQ=45,即PA=36,

∴OP=;

∵PA、PB是⊙O的切線,

∴OP⊥AB,AC=BC,

∴PA•OA=OP•AC,即36×12=•AC,

∴AC=,故AB=

 

【解析】略

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖所示,P是⊙O外一點,PA是⊙O的切線,A是切點,B是⊙O 上一點,且PA精英家教網(wǎng)=PB,連接AO、BO、AB,并延長BO與切線PA相交于點Q.
(1)求證:PB是⊙O的切線;
(2)求證:AQ•PQ=OQ•BQ;
(3)設∠AOQ=α,若cosα=
45
,OQ=15,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,P是⊙O外一點,PA,PB分別和⊙O切于A,B兩點,C是
AB
上任意一點,過C作⊙O的切線分別交PA,PB于D,E.若△PDE的周長為12,則PA的長為( 。
A、12B、6C、8D、4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,P是⊙O外一點,PA,PB分別和⊙O切于A,B兩點,C是
AB
上任意一點,過C作⊙O的切線分別交PA,PB于D,E.
(1)若△PDE的周長為10,則PA的長為
5
5
;
(2)連接CA、CB,若∠P=50°,則∠BCA的度數(shù)為
115
115
度.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(四川廣安卷)數(shù)學 題型:解答題

如圖所示,P是⊙O外一點,PA是⊙O的切線,A是切點,B是⊙O 上一點,且PA=PB,連接AO、BO、AB,并延長BO與切線PA相交于點Q.

(1)求證:PB是⊙O的切線;
(2)求證:AQ•PQ=OQ•BQ;
(3)設∠AOQ=α,若cosα= ,OQ=15,求AB的長.
[來源:學科網(wǎng)ZXXK]

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年浙江省翠苑中學九年級下學期3月考數(shù)學卷(帶解析) 題型:解答題

如圖所示.P⊙O外一點.PA⊙O的切線.A是切點.B⊙O上一點.且PA=PB,連接AO、BO、AB,并延長BO與切線PA相交于點Q

(1)求證:PB⊙O的切線;
(2)求證: AQ?PQ= OQ?BQ; 
(3)設∠AOQ=.若cos=OQ= 15.求AB的長

查看答案和解析>>

同步練習冊答案