【題目】如圖,AB4,射線BMAB互相垂直,點(diǎn)DAB上的一個(gè)動(dòng)點(diǎn),點(diǎn)E在射線BM上,BEDB,作EFDE并截取EFDE,連接AF并延長(zhǎng)交射線BM于點(diǎn)C.設(shè)BExBCy,則y關(guān)于x的函數(shù)解析式為(  )

A.B.C.D.

【答案】A

【解析】

FMBCM.由△DBE≌△EMF,推出FM=BE=x,EM=BD=2BE=2x,由FMAB,推出,即=,由此即可解決問題.

解:作FMBCM

∵∠DBE=DEF=EMF=90°,
∴∠DEB+BDE=90°,∠DEB+FEM=90°,
∴∠BDE=FEM
在△DBE和△EMF中,

∴△DBE≌△EMF,
FM=BE=xEM=BD=2BE=2x,
FMAB

,即=,

y=

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是一張銳角三角形的硬紙片.AD是邊BC上的高,BC=40cm,AD=30cm.從這張硬紙片剪下一個(gè)長(zhǎng)HG是寬HE2倍的矩形EFGH.使它的一邊EFBC上,頂點(diǎn)G,H分別在AC,AB上.ADHG的交點(diǎn)為M

1)求證:;

2)求這個(gè)矩形EFGH的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在O中,AB是直徑,點(diǎn)C是圓上一點(diǎn),點(diǎn)D是弧BC中點(diǎn),過點(diǎn)DO切線DF,連接AC并延長(zhǎng)交DF于點(diǎn)E

1)求證:AEEF

2)若圓的半徑為5,BD6 AE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ADBC,BEAC,垂足分別為D、E,ADBE相交于點(diǎn)F

(1)求證:△ACD∽△BFD;

(2)若∠ABD=45°,AC=3時(shí),求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】10分)水果店張阿姨以每斤2元的價(jià)格購(gòu)進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價(jià)銷售.

1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)在正方形的對(duì)角線上,正方形的邊長(zhǎng)是,的兩條直角邊分別交邊于點(diǎn)

1)操作發(fā)現(xiàn):如圖2,固定點(diǎn),使繞點(diǎn)旋轉(zhuǎn),當(dāng)時(shí),四邊形是正方形.

填空:①當(dāng)時(shí),四邊形的邊長(zhǎng)是_____;

②當(dāng)是正實(shí)數(shù))時(shí),四邊形的面積是______;

2)猜想論證:如圖3,將四邊形的形狀改變?yōu)榫匦危?/span>,點(diǎn)在矩形的對(duì)角線的兩條直角邊分別交邊于點(diǎn),固定點(diǎn),使繞點(diǎn)旋轉(zhuǎn),則______;

3)拓展探究:如圖4,當(dāng)四邊形滿足條件:,時(shí),點(diǎn)在對(duì)角線上,分別交邊于點(diǎn),固定點(diǎn),使繞點(diǎn)旋轉(zhuǎn),請(qǐng)?zhí)骄?/span>的值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形中,,以為圓心,長(zhǎng)為半徑畫,點(diǎn)上移動(dòng),連接,并將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),連接.在點(diǎn)移動(dòng)的過程中,長(zhǎng)度的最小值是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的最高點(diǎn)的縱坐標(biāo)是2

1)求拋物線的表達(dá)式;

2)將拋物線在之間的部分記為圖象,將圖象沿直線x=1翻折,翻折后圖象記為,圖象組成G,直線:和圖象Gx軸上方的部分有兩個(gè)公共點(diǎn),求k的取值范圍;

3)直線:與圖象Gx軸上方的部分分別交于A、M、PQ四點(diǎn),若AM=2PQ,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在坡頂處的同一水平面上有一座古塔,數(shù)學(xué)興趣小組的同學(xué)在斜坡底處測(cè)得該塔的塔頂的仰角為,然后他們沿著坡度為的斜坡攀行了米,在坡頂處又測(cè)得該塔的塔頂的仰角為.求古塔的高度.(結(jié)果精確到米,參考數(shù)據(jù): , ,

查看答案和解析>>

同步練習(xí)冊(cè)答案