【題目】如圖,△ABC是一張銳角三角形的硬紙片.AD是邊BC上的高,BC=40cm,AD=30cm.從這張硬紙片剪下一個(gè)長(zhǎng)HG是寬HE的2倍的矩形EFGH.使它的一邊EF在BC上,頂點(diǎn)G,H分別在AC,AB上.AD與HG的交點(diǎn)為M.
(1)求證:;
(2)求這個(gè)矩形EFGH的周長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)72cm.
【解析】
(1)根據(jù)矩形性質(zhì)得出∠AHG=∠ABC,再證明△AHG∽△ABC,即可得出結(jié)論;
(2)根據(jù)(1)中比例式即可求出HE的長(zhǎng)度,以及矩形的周長(zhǎng).
解:(1)證明:∵四邊形EFGH為矩形,
∴EF∥GH,
∴∠AHG=∠ABC,
又∵∠HAG=∠BAC,
∴△AHG∽△ABC,
∴;
(2)解:由(1)得:設(shè)HE=xcm,則MD=HE=xcm.
∵AD=30cm,
∴AM=(30﹣x)cm.
∵HG=2HE,
∴HG=(2x)cm,
可得:,
解得:x=12,
故HG=2x=24,
所以矩形EFGH的周長(zhǎng)為:2×(12+24)=72(cm).
答:矩形EFGH的周長(zhǎng)為72cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點(diǎn)A、D為圓心,以大于的長(zhǎng)為半徑在AD的兩側(cè)作弧,交于兩點(diǎn)M、N;第二步,連結(jié)MN,分別交AB、AC于點(diǎn)E、F;第三步,連結(jié)DE、DF..若BD=6,AF=4,CD=3,則BE的長(zhǎng)是( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A是第一象限內(nèi)橫坐標(biāo)為的一個(gè)定點(diǎn),AC⊥x軸于點(diǎn)M,交直線y=﹣x于點(diǎn)N.若點(diǎn)P是線段ON上的一個(gè)動(dòng)點(diǎn),∠APB=30°,BA⊥PA,則點(diǎn)P在線段ON上運(yùn)動(dòng)時(shí),A點(diǎn)不變,B點(diǎn)隨之運(yùn)動(dòng).求當(dāng)點(diǎn)P從點(diǎn)O運(yùn)動(dòng)到點(diǎn)N時(shí),點(diǎn)B運(yùn)動(dòng)的路徑長(zhǎng)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)“六一”期間進(jìn)行一個(gè)有獎(jiǎng)銷售的活動(dòng),設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(如圖),并規(guī)定:顧客購(gòu)物100元以上就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),當(dāng)轉(zhuǎn)盤停止時(shí),指針落在哪一區(qū)域就可以獲得相應(yīng)的獎(jiǎng)品(若指針落在兩個(gè)區(qū)域的交界處,則重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤).下表是此次促銷活動(dòng)中的一組統(tǒng)計(jì)數(shù)據(jù):
轉(zhuǎn)動(dòng)轉(zhuǎn)盤的次數(shù)n | 100 | 200 | 400 | 500 | 800 | 1 000 |
落在“可樂(lè)”區(qū)域 的次數(shù)m | 60 | 122 | 240 | 298 | 604 | |
落在“可樂(lè)” 區(qū)域的頻率 | 0.6 | 0.61 | 0.6 | 0.59 | 0.604 |
(1)計(jì)算并完成上述表格;
(2)請(qǐng)估計(jì)當(dāng)n很大時(shí),頻率將會(huì)接近__________;假如你去轉(zhuǎn)動(dòng)該轉(zhuǎn)盤一次,你獲得“可樂(lè)”的概率約是__________;(結(jié)果精確到0.1)
(3)在該轉(zhuǎn)盤中,表示“車模”區(qū)域的扇形的圓心角約是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,G是正方形ABCD對(duì)角線AC上一點(diǎn),作GE⊥AD,GF⊥AB,垂足分別為點(diǎn)E、F.
求證:四邊形AFGE與四邊形ABCD相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)化肥的總?cè)蝿?wù)一定,平均每天化肥產(chǎn)量y(噸)與完成生產(chǎn)任務(wù)所需要的時(shí)間x(天)之間成反比例關(guān)系,如果每天生產(chǎn)化肥125噸,那么完成總?cè)蝿?wù)需要7天.
(1)求y關(guān)于x的函數(shù)表達(dá)式,并指出比例系數(shù);
(2)若要5天完成總?cè)蝿?wù),則每天產(chǎn)量應(yīng)達(dá)到多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,E、F分別是AD、BC的中點(diǎn),BE、DF分別交AC于點(diǎn)G、H,連接DG、BH.
(1)求證:四邊形EBFD是平行四邊形;
(2)四邊形GBHD是平行四邊形嗎?請(qǐng)說(shuō)明理由;
(3)若GD=CH,試判斷AC與GH之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B、C.
(1)求拋物線的解析式;
(2)若點(diǎn)P是第二象限內(nèi)拋物線上的動(dòng)點(diǎn),其橫坐標(biāo)為t,設(shè)拋物線對(duì)稱軸l與x軸交于一點(diǎn)E,連接PE,交CD于F,求以C、E、F為頂點(diǎn)三角形與△COD相似時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=4,射線BM和AB互相垂直,點(diǎn)D是AB上的一個(gè)動(dòng)點(diǎn),點(diǎn)E在射線BM上,BE=DB,作EF⊥DE并截取EF=DE,連接AF并延長(zhǎng)交射線BM于點(diǎn)C.設(shè)BE=x,BC=y,則y關(guān)于x的函數(shù)解析式為( )
A.-B.-C.-D.-
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com