已知等腰和等腰中,∠ACB=∠AED=90°,且AD=AC

(1)發(fā)現(xiàn):如圖1,當(dāng)點(diǎn)E在AB上且點(diǎn)C和點(diǎn)D重合時(shí),若點(diǎn)M、N分別是DB、EC的中點(diǎn),則MN與EC的位置關(guān)系是             ,MN與EC的數(shù)量關(guān)系是            

(2)探究:若把(1)小題中的△AED繞點(diǎn)A旋轉(zhuǎn)一定角度,如圖2所示,連接BD和EC,并連接DB、EC的中點(diǎn)M、N,則MN與EC的位置關(guān)系和數(shù)量關(guān)系仍然能成立嗎?若成立,請(qǐng)以逆時(shí)針旋轉(zhuǎn)45°得到的圖形(圖3)為例給予證明位置關(guān)系成立,以順時(shí)針旋轉(zhuǎn)45°得到的圖形(圖4)為例給予證明數(shù)量關(guān)系成立,若不成立,請(qǐng)說(shuō)明理由。

        


解:解:(1).(2)連接EM并延長(zhǎng)到F,使EM=MF,連接CM、CFBF.

BM=MD,∠EMD=∠BMF,

∴△EDM≌△FBM

BF=DE=AE,∠FBM=∠EDM=135°

∴∠FBC=∠EAC=90°

∴△EAC≌△FBC

FC=EC, ∠FCB=∠ECA-

∴∠ECF=∠FCB+∠BCE =∠ECA+∠BCE=90°

又點(diǎn)MN分別是EF、EC的中點(diǎn)

MNFC

MNFC---------8分

(可把RtEAC繞點(diǎn)C旋轉(zhuǎn)90°得到Rt△CBF,連接MF,ME,MC,然后證明三點(diǎn)共線)

證法2:延長(zhǎng)EDF,連接AF、MF,則AF為矩形ACFE對(duì)角線,所以比經(jīng)過(guò)EC的中點(diǎn)NAN=NF=EN=NC.-

RtBDF中,MBD的中點(diǎn),

B=45°

FD=FB

FMAB,

MN=NA=NF=NC-

∴點(diǎn)A、C、F、M都在以N為圓心的圓上

∴∠MNC=2∠DAC由四邊形MACF中,∠MFC=135°

FMA=∠ACB=90°

∴∠DAC=45°

∴∠MNC=90°即MNFC-

(還有其他證法,相應(yīng)給分)

(3)連接EF并延長(zhǎng)交BCF

∵∠AED=∠ACB=90°

DEBC

∴∠DEM=∠AFM,∠EDM=∠MBF

BM=MD

∴△EDM≌△FBM-

BF=DE=AE,EM=FM

(另證:也可連接DN并延長(zhǎng)交BCM

備注:任意旋轉(zhuǎn)都成立,如下圖證明兩個(gè)紅色三角形全等。其中∠EAC=∠CBF的證明,

可延長(zhǎng)EDBCG,通過(guò)角的轉(zhuǎn)換得到


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(2,2),點(diǎn)C是線段OA上的一個(gè)動(dòng)點(diǎn)(不運(yùn)動(dòng)至O,A兩點(diǎn)),過(guò)點(diǎn)C作CD⊥x軸,垂足為D,以CD為邊在右側(cè)作正方形CDEF. 連接AF并延長(zhǎng)交x軸的正半軸于點(diǎn)B,連接OF,設(shè)OD=t.

⑴tan∠FOB=           ;

⑵ 已知二次函數(shù)圖像 經(jīng)過(guò)O、C、F三點(diǎn),求二次函數(shù)的解析式;

⑶ 當(dāng)t為何值時(shí)以B,E,F(xiàn)為頂點(diǎn)的三角形與△OFE相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖1,某超市從底樓到二樓有一自動(dòng)扶梯,圖2是側(cè)面示意圖.已知自動(dòng)扶梯AB的坡度為1:2.4,AB的長(zhǎng)度是13米,MN是二樓樓頂,MN∥PQ,C是MN上處在自動(dòng)扶梯頂端B點(diǎn)正上方的一點(diǎn),BC⊥MN,在自動(dòng)扶梯底端A處測(cè)得C點(diǎn)的仰角為42°,求二樓的層高BC(精確到0.1米).(原創(chuàng))(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


分解因式:           

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


某校初三(1)班的同學(xué)踴躍為“雅安蘆山地震”捐款,根據(jù)捐款情況(捐款數(shù)為正數(shù))制作以下統(tǒng)計(jì)圖表,但生活委員不小心把墨水滴在統(tǒng)計(jì)表上,部分?jǐn)?shù)據(jù)看不清楚。

(1)全班有多少人捐款?

(2)如果捐款0~20元的人數(shù)在扇形統(tǒng)計(jì)圖中所占的圓心角為72°,那么捐款21~40元的有多少人?

捐款

人數(shù)

0~20元

21~40元

41~60元

61~80元

6

81元以上

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


 將下列圖形繞其對(duì)角線的交點(diǎn)順時(shí)針旋轉(zhuǎn)90°,所得圖形一定與原圖形重合的是

A. 平行四邊形            B. 矩形             C. 正方形           D. 菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,△ABC中,∠C = 90°,M是AB的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AC方向勻速運(yùn)動(dòng)到終點(diǎn)C,動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CB方向勻速運(yùn)動(dòng)到終點(diǎn)B. 已知P,Q兩點(diǎn)同時(shí)出發(fā),并同時(shí)到達(dá)終點(diǎn),連接MP,MQ,PQ .  在整個(gè)運(yùn)動(dòng)過(guò)程中,△MPQ的面積大小變化情況是

A. 一直增大                 B. 一直減小    

C. 先減小后增大             D. 先增大后減小

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


下列圖形中,不是中心對(duì)稱圖形是( 。

 

A.

矩形

B.

菱形

C.

正五邊形

D.

正八邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


已知:如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上運(yùn)動(dòng),當(dāng)△ODP是腰長(zhǎng)為5的等腰三角形時(shí),則P點(diǎn)的坐標(biāo)為 

查看答案和解析>>

同步練習(xí)冊(cè)答案