【題目】解不等式組.把不等式組的解集在數軸上表示出來,并寫出不等式組的非負整數解.
【答案】解:,
由①得:x≥﹣1,
由②得:x<3,
∴不等式組的解集為:﹣1≤x<3。
在數軸上表示為:
不等式組的非負整數解為2,1,0。
【解析】
試題解一元一次不等式組,先求出不等式組中每一個不等式的解集,再利用口訣求出這些解集的公共部分:同大取大,同小取小,大小小大中間找,大大小小解不了(無解)。最后找出解集范圍內的非負整數即可。
不等式組的解集在數軸上表示的方法:把每個不等式的解集在數軸上表示出來(>,≥向右畫;<,≤向左畫),數軸上的點把數軸分成若干段,如果數軸的某一段上面表示解集的線的條數與不等式的個數一樣,那么這段就是不等式組的解集.有幾個就要幾個。在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示。
科目:初中數學 來源: 題型:
【題目】在運動會前夕,育紅中學都會購買籃球、足球作為獎品.若購買10個籃球和15個足球共花費3000元,且購買一個籃球比購買一個足球多花50元.
(1)求購買一個籃球,一個足球各需多少元?
(2)今年學校計劃購買這種籃球和足球共10個,恰逢商場在搞促銷活動,籃球打九折,足球打八五折,若此次購買兩種球的總費用不超過1050元,則最多可購買多少個籃球?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(10分)某商場用2500元購進了A、B兩種新型節(jié)能臺燈共50盞,這兩種臺燈的進價,標價如下表所示:
(1)這兩種臺燈各購進多少盞?
(2)若A型臺燈按標價的九折出售,B型臺燈按標價的八折出售,那么這批臺燈全部售完后,商場共獲利多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校計劃組織師生共300人參加一次大型公益活動,如果租用6輛大客車和5輛小客車,恰好全部坐滿,已知每輛大客車的乘客座位數比小客車多17個.
(1)求每輛大客車和每輛小客車的乘客座位數;
(2)由于最后參加活動的人數增加了30人,學校決定調整租車方案,在保持租用車輛總數不變的情況下,且所有參加活動的師生都有座位,求租用小客車數量的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,C=90°,BD是角平分線,點O在AB上,以點O為圓心,OB為半徑的圓經過點D,交BC于點E.
(1)求證:AC是⊙O的切線;
(2)若OB=10,CD=8,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E在對角線AC上,點F在邊BC上,連接BE、DF,DF交對角線AC于點G,且DE=DG.
(1)求證:AE=CG;
(2)試判斷BE和DF的位置關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB,CD,EF相交于點O.
(1)寫出∠COE的鄰補角;
(2)分別寫出∠COE和∠BOE的對頂角;
(3)如果∠BOD=60°,∠BOF=90°,求∠AOF和∠FOC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在矩形ABCD中,∠ADC的平分線DE與BC邊所在的直線交于點E,點P是線段DE上一定點(其中EP<PD)
(1)如圖1,若點F在CD邊上(不與D重合),將∠DPF繞點P逆時針旋轉90°后,角的兩邊PD、PF分別交射線DA于點H、G.
①求證:PG=PF; ②探究:DF、DG、DP之間有怎樣的數量關系,并證明你的結論.
(2)拓展:如圖2,若點F在CD的延長線上(不與D重合),過點P作PG⊥PF,交射線DA于點G,你認為(1)中DF、DG、DP之間的數量關系是否仍然成立?若成立,給出證明;若不成立,請寫出它們所滿足的數量關系式,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com