【題目】如圖,一次函數(shù)y=﹣2x+4的圖象與x軸、y軸分別交于點(diǎn)A、B,點(diǎn)C是OA的中點(diǎn),過(guò)點(diǎn)C作CD⊥OA于C交一次函數(shù)圖象于點(diǎn)D,P是OB上一動(dòng)點(diǎn),則PC+PD的最小值為( 。
A.4B.C.2D.2+2
【答案】C
【解析】
作點(diǎn)C關(guān)于y軸的對(duì)稱(chēng)點(diǎn)C′,連接C′D交y軸于點(diǎn)P,此時(shí)PC+PD取得最小值,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出點(diǎn)A的坐標(biāo),由點(diǎn)C是OA的中點(diǎn)可得出點(diǎn)C的坐標(biāo),由點(diǎn)C,C′關(guān)于y軸對(duì)稱(chēng)可得出CC′的值及PC=PC′,再利用勾股定理即可求出此時(shí)C′D(即PC+PD)的值,此題得解.
解:作點(diǎn)C關(guān)于y軸的對(duì)稱(chēng)點(diǎn)C′,連接C′D交y軸于點(diǎn)P,此時(shí)PC+PD取得最小值,如圖所示.
當(dāng)y=0時(shí),﹣2x+4=0,解得:x=2,
∴點(diǎn)A的坐標(biāo)為(2,0).
∵點(diǎn)C是OA的中點(diǎn),
∴OC=1,點(diǎn)C的坐標(biāo)為(1,0).
當(dāng)x=1時(shí),y=﹣2x+4=2,
∴CD=2.
∵點(diǎn)C,C′關(guān)于y軸對(duì)稱(chēng),
∴CC′=2OC=2,PC=PC′,
∴PC+PD=PC′+PD=C′D=.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,為軸負(fù)半軸上的點(diǎn),為軸負(fù)半軸上的點(diǎn).
(1)如圖1,以點(diǎn)為頂點(diǎn)、為腰在第三象限作等腰,若,,試求點(diǎn)的坐標(biāo);
(2)如圖,若點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)的縱坐標(biāo)為,以為頂點(diǎn),為腰作等腰.試問(wèn):當(dāng)點(diǎn)沿軸負(fù)半軸向下運(yùn)動(dòng)且其他條件都不變時(shí),整式的值是否發(fā)生變化?若不發(fā)生變化,請(qǐng)求出其值;若發(fā)生變化,請(qǐng)說(shuō)明理由;
(3)如圖,為軸負(fù)半軸上的一點(diǎn),且,于點(diǎn),以為邊作等邊,連接交于點(diǎn),試探索:在線段、和中,哪條線段等于與的差的一半?請(qǐng)你寫(xiě)出這個(gè)等量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=3ax2+2bx+c,
(1)若a=3k,b=5k,c=k+1,試說(shuō)明此類(lèi)函數(shù)圖象都具有的性質(zhì);
(2)若a=, c=2+b且拋物線在﹣2≤x≤2區(qū)間上的最小值是﹣3,求b的值;
(3)若a+b+c=1,是否存在實(shí)數(shù)x,使得相應(yīng)的y的值為1,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是8×8的標(biāo)準(zhǔn)點(diǎn)陣圖,直線l、m互相垂直,已知△ABC.
(1)寫(xiě)出△ABC的形狀;
(2)分別畫(huà)出△ABC關(guān)于直線l、m對(duì)稱(chēng)的△A1B1C1,△A2B2C2,再畫(huà)出△A1B1C1關(guān)于直線m對(duì)稱(chēng)的△A3B3C3
(3)△A2B2C2與△A3B3C3關(guān)于哪條直線對(duì)稱(chēng)? (填“直線l、m”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.
(1)求函數(shù)y=kx+b和y=的表達(dá)式;
(2)已知點(diǎn)C(0,5),試在該一次函數(shù)圖象上確定一點(diǎn)M,使得MB=MC,求此時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D在AB上,且CD=CB,點(diǎn)E為BD的中點(diǎn),點(diǎn)F為AC的中點(diǎn),連結(jié)EF交CD于點(diǎn)M.
(1)求證:EF=AC.
(2)連接AM,若∠BAC=45°,AM+DM=15,BE=9,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P在正方形ABCD邊AD上,連接PB,過(guò)點(diǎn)B作一條射線與邊DC的延長(zhǎng)線交于點(diǎn) Q,使得∠QBE=∠PBC,其中E是邊AB延長(zhǎng)線上的點(diǎn),連接PQ,若PQ=PB+PD+3,則△PAB的面積為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程解應(yīng)用題:根據(jù)《中國(guó)鐵路中長(zhǎng)期發(fā)展規(guī)劃》,預(yù)計(jì)到2020年底,我國(guó)建設(shè)城際軌道交通的公里數(shù)是客運(yùn)專(zhuān)線的2倍。其中建設(shè)城際軌道交通約投入8000億元,客運(yùn)專(zhuān)線約投入3500億元。據(jù)了解,建設(shè)每公里城際軌道交通與客運(yùn)專(zhuān)線共需1.5億元。預(yù)計(jì)到2020年底,我國(guó)將建設(shè)城際軌道交通和客運(yùn)專(zhuān)線分別約多少公里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用圖象解一元二次方程x2-2x-1=0時(shí),我們采用的一種方法是在直角坐標(biāo)系中畫(huà)出拋物線y=x2和直線y=2x+1,兩圖象交點(diǎn)的橫坐標(biāo)就是該方程的解.
(1)請(qǐng)?jiān)俳o出一種利用圖象求方程x2-2x-1=0的解的方法;
(2)已知函數(shù)y=x3的圖象(如圖),求方程x3-x-2=0的解(結(jié)果保留兩位有效數(shù)字).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com