【題目】如圖,⊙O的半徑是2,直線l與⊙O相交于A、B兩點(diǎn),M、N是⊙O上的兩個(gè)動(dòng)點(diǎn),且在直線l的異側(cè),若∠AMB=45°,則四邊形MANB面積的最大值是(
A.2
B.4
C.4
D.8

【答案】C
【解析】解:過點(diǎn)O作OC⊥AB于C,交⊙O于D、E兩點(diǎn),連結(jié)OA、OB、DA、DB、EA、EB,如圖,

∵∠AMB=45°,

∴∠AOB=2∠AMB=90°,

∴△OAB為等腰直角三角形,

∴AB= OA=2 ,

∵S四邊形MANB=S△MAB+S△NAB

∴當(dāng)M點(diǎn)到AB的距離最大,△MAB的面積最大;當(dāng)N點(diǎn)到AB的距離最大時(shí),△NAB的面積最大,

即M點(diǎn)運(yùn)動(dòng)到D點(diǎn),N點(diǎn)運(yùn)動(dòng)到E點(diǎn),

此時(shí)四邊形MANB面積的最大值=S四邊形DAEB=S△DAB+S△EAB= ABCD+ ABCE= AB(CD+CE)= ABDE= ×2 ×4=4

故選C.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識(shí),掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對(duì)垂徑定理的理解,了解垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,且、.將其平移后得到,若的對(duì)應(yīng)點(diǎn)是,,的對(duì)應(yīng)點(diǎn)的坐標(biāo)是

1)在平面直角坐標(biāo)系中畫出;

2)此次平移也可看作_________平移________個(gè)單位長度,再向__________平移了________個(gè)單位長度得到

3)求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操作與探索

已知點(diǎn)O為直線AB上一點(diǎn),作射線OC,將直角三角板ODE放置在直線上方(如圖),使直角頂點(diǎn)與點(diǎn)O重合,一條直角邊OD重疊在射線OA上,將三角板繞點(diǎn)O旋轉(zhuǎn)

(1)當(dāng)三角板旋轉(zhuǎn)到如圖的位置時(shí),若OD平分AOC,試說明OE也平分BOC.

(2)若OCAB,垂足為點(diǎn)O(如圖),請直接寫出與DOB互補(bǔ)的角

(3)AOC=135°(如圖),三角板繞點(diǎn)O按順時(shí)針如圖的位置開始旋轉(zhuǎn),到OE邊與射線OB重合結(jié)束. 請通過操作,探索:在旋轉(zhuǎn)過程中,DOBCOE的差是否發(fā)生變化?若不變,請求出這個(gè)差值;若變化,請用含有n(n為三角板旋轉(zhuǎn)的度數(shù))的代數(shù)式表示這個(gè)差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩塊等腰直角三角形紙片AOB和COD按圖1所示放置,直角頂點(diǎn)重合在點(diǎn)O處,AB=25,CD=17.保持紙片AOB不動(dòng),將紙片COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α(0°<α<90°)角度,如圖2所示.
(1)利用圖2證明AC=BD且AC⊥BD;
(2)當(dāng)BD與CD在同一直線上(如圖3)時(shí),求AC的長和α的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠A被平行直線l1、l2所截,若∠1=100°,∠2=125°,則∠A的度數(shù)是( ).

A.25°
B.30°
C.35°
D.45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓O的內(nèi)接四邊形ABCD中,BC=DC,∠BOC=130°,則∠BAD的度數(shù)是( ).

A.120°
B.130°
C.140°
D.150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y= 的圖象在第一象限交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.
(1)求函數(shù)y=kx+b和y= 的表達(dá)式;
(2)已知點(diǎn)C(0,5),試在該一次函數(shù)圖象上確定一點(diǎn)M,使得MB=MC,求此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在長方形紙片ABCD中,AB=m,AD=n,將兩張邊長分別為64的正方形紙片按圖1,圖2兩種方式放置(圖1,圖2中兩張正方形紙片均有部分重疊),長方形中未被這兩張正方形紙片覆蓋的部分用陰影表示,設(shè)圖1中陰影部分的面積為S1,圖2中陰影部分的面積為S2

1)在圖1中,EF= ,BF= ;(用含m的式子表示)

2)請用含m、n的式子表示圖1,圖2中的s1,s2,若m-n=2,請問S2-S1的值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,ABAC,∠BAC=90°,點(diǎn)DAC上一動(dòng)點(diǎn).

(1)如圖1,點(diǎn)E、點(diǎn)F均是射線BD上的點(diǎn)并且滿足AEAF,∠EAF=90°.求證:△ABE≌△ACF;

(2)在(1)的條件下,求證:CFBD;

(3)由(1)我們知道∠AFB=45°,如圖2,當(dāng)點(diǎn)D的位置發(fā)生變化時(shí),過點(diǎn)CCFBDF,連接AF.那么∠AFB的度數(shù)是否發(fā)生變化?請證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案