【題目】計算:
(1)|-2|÷(-)+(-5)×(-2); (2)(-+)×(-24);
(3)15÷(-+); (4)(-2)2-|-7|-3÷(-)+(-3)3×(-)2.
【答案】(1)6 (2)-24 (3)-22.5 (4)6
【解析】
(1)先化簡絕對值,然后計算除法和乘法,最后再計算加法即可;
(2)24是括號內(nèi)每一項分母的倍數(shù),因此運用乘法的分配率進行計算較為簡單;
(3)先算括號內(nèi)的加法,然后把除法轉(zhuǎn)化為乘法進行計算即可;
(4)先算乘方和化簡絕對值,然后計算除法和乘法,最后計算加減即可.
解:(1)原式=2×(-2)+10
=-4+10
=6;
(2)原式=×(-24)-×(-24)+×(-24)
=-16+12-20
=-24;
(3)原式=15÷()
=15×()
=-22.5;
(4)原式=4-7+12+(-27)×
=9-3
=6.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,矩形鐵片ABCD的長為2a,寬為a; 為了要讓鐵片能穿過直徑為 的圓孔,需對鐵片進行處理(規(guī)定鐵片與圓孔有接觸時鐵片不能穿過圓孔);
(1)如圖2,M、N、P、Q分別是AD、AB、BC、CD的中點,若將矩形鐵片的四個角去掉,只余下四邊形MNPQ, ①則此時鐵片是什么形狀;
②給出證明,并通過計算說明此時鐵片都能穿過圓孔;
(2)如圖3,過矩形鐵片ABCD的中心作一條直線分別交邊BC、AD于點E、F(不與端點重合),沿著這條直線將矩形鐵片切割成兩個全等的直角梯形鐵片;
①當BE=DF= 時,判斷直角梯形鐵片EBAF能否穿過圓孔,并說明理由;
②為了能使直角梯形鐵片EBAF順利穿過圓孔,請直接寫出線段BE的長度的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,(1)指出DC和AB被AC所截得的內(nèi)錯角;
(2)指出AD和BC被AE所截得的同位角;
(3)指出∠4與∠7,∠2與∠6,∠ADC與∠DAB各是什么關系的角,并指出各是哪兩條直線被哪一條直線所截形成的.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】填寫推理理由,將過程補充完整:
如圖,已知AD⊥BC于點D,EF⊥BC于點F,AD平分∠BAC.求證:∠E=∠1.
證明:∵AD⊥BC,EF⊥BC(已知),
∴∠ADC=∠EFC=90°(垂直的定義).
∴____________(_____________).
∴∠1=_____(_____________),
∠E=_____(_______________).
又∵AD平分∠BAC(已知),
∴_____=________.
∴∠1=∠E(等量代換).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有20筐白菜,以每筐25千克為標準,超過或不足的千克數(shù)分別用正、負數(shù)來表示,記錄如下:
與標準質(zhì)量的差值(單位:千克) | ||||||
筐 數(shù) | 1 | 4 | 2 | 3 | 2 | 8 |
(1)20筐白菜中,最重的一筐比最輕的一筐重______千克;
(2)與標準重量比較,20筐白菜總計超過或不足多少千克?
(3)若白菜每千克售價元,則出售這20筐白菜可賣多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】函數(shù)y=x2+bx+c與y=x的圖象如圖所示,有以下結(jié)論: ①b2﹣4c>0;
②b+c+1=0;
③3b+c+6=0;
④當1<x<3時,x2+(b﹣1)x+c<0.
其中正確的個數(shù)為( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是某同學對多項式(x2-4x+2)(x2-4x+6)+4進行因式分解的過程.
解:設x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
回答下列問題:
(1)該同學第二步到第三步運用了因式分解的_______.
A.提取公因式 |
B.平方差公式 |
C.兩數(shù)和的完全平方公式 |
D.兩數(shù)差的完全平方公式 |
(2)該同學因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)若不徹底,請直接寫出因式分解的最后結(jié)果_________ .
(3)請你模仿以上方法嘗試對多項式(x2-2x)(x2-2x+2)+1進行因式分解.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com