【題目】如圖1,矩形鐵片ABCD的長(zhǎng)為2a,寬為a; 為了要讓鐵片能穿過(guò)直徑為 的圓孔,需對(duì)鐵片進(jìn)行處理(規(guī)定鐵片與圓孔有接觸時(shí)鐵片不能穿過(guò)圓孔);
(1)如圖2,M、N、P、Q分別是AD、AB、BC、CD的中點(diǎn),若將矩形鐵片的四個(gè)角去掉,只余下四邊形MNPQ, ①則此時(shí)鐵片是什么形狀;
②給出證明,并通過(guò)計(jì)算說(shuō)明此時(shí)鐵片都能穿過(guò)圓孔;

(2)如圖3,過(guò)矩形鐵片ABCD的中心作一條直線(xiàn)分別交邊BC、AD于點(diǎn)E、F(不與端點(diǎn)重合),沿著這條直線(xiàn)將矩形鐵片切割成兩個(gè)全等的直角梯形鐵片;
①當(dāng)BE=DF= 時(shí),判斷直角梯形鐵片EBAF能否穿過(guò)圓孔,并說(shuō)明理由;
②為了能使直角梯形鐵片EBAF順利穿過(guò)圓孔,請(qǐng)直接寫(xiě)出線(xiàn)段BE的長(zhǎng)度的取值范圍.

【答案】
(1)①菱形,

②如圖,過(guò)點(diǎn)M作MG⊥NP于點(diǎn)G,

∵M(jìn)、N、P、Q分別是AD、AB、BC、CD的中點(diǎn),

∴△AMN≌△BPN≌△CPQ≌△DMQ,

∴MN=NP=PQ=QM,

∴四邊形MNPQ是菱形,

,

MN= ,

∴MG= ,

∴此時(shí)鐵片能穿過(guò)圓孔;


(2)①如圖,過(guò)點(diǎn)A作AH⊥EF于點(diǎn)H,過(guò)點(diǎn)E作EK⊥AD于點(diǎn)K,

顯然AB= ,

故沿著與AB垂直的方向無(wú)法穿過(guò)圓孔,

過(guò)點(diǎn)A作EF的平行線(xiàn)RS,故只需計(jì)算直線(xiàn)RS與EF之間的距離即可,

∵BE=AK= ,EK=AB=a,AF= ,

∴KF= ,EF= ,

∵∠AHF=∠EKF=90°,∠AFH=∠EFK,

∴△AHF∽△EKF,

,可得AH= ,

∴該直角梯形鐵片不能穿過(guò)圓孔;


【解析】(1)利用四條邊相等的四邊形為矩形來(lái)判定四邊形為菱形,然后利用面積相等來(lái)求得菱形一邊的高,與已知數(shù)據(jù)比較后判斷是否能通過(guò).(2)利用兩三角形相似得到比例線(xiàn)段,進(jìn)而求出點(diǎn)A到EF的距離,然后與已知線(xiàn)段比較,從而判定能否通過(guò).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線(xiàn)與圓的三種位置關(guān)系的相關(guān)知識(shí),掌握直線(xiàn)與圓有三種位置關(guān)系:無(wú)公共點(diǎn)為相離;有兩個(gè)公共點(diǎn)為相交,這條直線(xiàn)叫做圓的割線(xiàn);圓與直線(xiàn)有唯一公共點(diǎn)為相切,這條直線(xiàn)叫做圓的切線(xiàn),這個(gè)唯一的公共點(diǎn)叫做切點(diǎn),以及對(duì)相似三角形的判定與性質(zhì)的理解,了解相似三角形的一切對(duì)應(yīng)線(xiàn)段(對(duì)應(yīng)高、對(duì)應(yīng)中線(xiàn)、對(duì)應(yīng)角平分線(xiàn)、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】保護(hù)環(huán)境、低碳出行已漸漸成為人們的習(xí)慣.最近無(wú)為縣城又引進(jìn)了共享單車(chē),只需要交點(diǎn)押金,就可以通過(guò)掃描二維碼的方式解鎖一輛停在路邊的自行車(chē),以極低的費(fèi)用,輕松騎到目的地.王老師家與學(xué)校相距2km,現(xiàn)在每天騎共享單車(chē)到學(xué)校所花的時(shí)間比過(guò)去騎電動(dòng)車(chē)多用4min.已知王老師騎電動(dòng)車(chē)的速度是騎共享單車(chē)速度的1.5倍,則王老師騎共享單車(chē)的速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,(M2,N2),BAC=30°,EAB邊的中點(diǎn),以BE為邊作等邊BDE,連接AD,CD.

(1)求證:ADE≌△CDB;

(2)若BC=,在AC邊上找一點(diǎn)H,使得BH+EH最小,并求出這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠A=64°,∠ABC與∠ACD的平分線(xiàn)交于點(diǎn)A1 , 則∠A1=;∠A1BC與∠A1CD的平分線(xiàn)相交于點(diǎn)A2 , 得∠A2;…;∠An1BC與∠An1CD的平分線(xiàn)相交于點(diǎn)An , 要使∠An的度數(shù)為整數(shù),則n的值最大為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】嫦娥四號(hào)探測(cè)器于201913日,成功著陸在月球背面,通過(guò)鵲橋中繼星傳回了世界第一張近距離拍攝的月背影像圖,開(kāi)啟了人類(lèi)月球探測(cè)新篇章.當(dāng)中繼星成功運(yùn)行于地月拉格朗日L2點(diǎn)時(shí),它距離地球約1500000km.用科學(xué)記數(shù)法表示數(shù)1500000( )

A. 15×105 B. 1.5×106 C. 0.15×107 D. 1.5×105

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,長(zhǎng)方形OABC的邊OA在數(shù)軸上,O為原點(diǎn),長(zhǎng)方形OABC的面積為12,OC邊長(zhǎng)為3.

(1)數(shù)軸上點(diǎn)A表示的數(shù)為________

(2)將長(zhǎng)方形OABC沿?cái)?shù)軸水平移動(dòng),移動(dòng)后的長(zhǎng)方形記為O′A′B′C′,移動(dòng)后的長(zhǎng)方形O′A′B′C′與原長(zhǎng)方形OABC重疊部分(如圖2中陰影部分)的面積記為S.

①當(dāng)S恰好等于原長(zhǎng)方形OABC面積的一半時(shí),數(shù)軸上點(diǎn)A′表示的數(shù)是多少?

  ②設(shè)點(diǎn)A的移動(dòng)距離AA′x.

  ()當(dāng)S4時(shí),求x的值;

  )D為線(xiàn)段AA′的中點(diǎn),點(diǎn)E在線(xiàn)段OO′上,且OEOO′,當(dāng)點(diǎn)D,E所表示的數(shù)互為相反數(shù)時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC 中,∠ABC=50°,∠ACB=80°,延長(zhǎng) CB 至 D,使 DB=BA,延長(zhǎng) BC 至 E,使 CE=CA,連接 AD 和 AE,求∠D,∠DAE 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C是線(xiàn)段AB上除A、B外的任意一點(diǎn),分別以AC、BC為邊在線(xiàn)段AB的同旁作等邊三角形ACD和等邊三角形BEC,連結(jié)AEDCM,連結(jié)BDCEN,AEBD交于F

(1)求證:AE=BD;

(2)連結(jié)MN,仔細(xì)觀察△MNC的形狀,猜想△MNC是什么三角形?說(shuō)出你的猜想,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

(1)|-2|÷(-)+(-5)×(-2); (2)()×(-24);

(3)15÷(-); (4)(-2)2-|-7|-3÷(-)+(-3)3×(-)2.

查看答案和解析>>

同步練習(xí)冊(cè)答案