【題目】如圖,正方形ABCD的邊長為10,點(diǎn)E在邊AB上,連接ED,過點(diǎn)D作FD⊥DE與BC的延長線相交于點(diǎn)F,連接EF與邊CD相交于點(diǎn)G,對角線BD相交于點(diǎn)H,若BD=BF,求BE的長.
【答案】解:∵在正方形ABCD中,∠BCD=90°,BC=CD=10,
∴BD=10 .
∵DF⊥DE,
∴∠ADE+∠EDC=90°,∠EDC+∠CDF=90°,
∴∠ADE=∠CDF,
在△ADE和△CDF中,
∴△ADE≌△CDF(ASA),
∴AE=CF.
又∵BD=BF=10 ,
∴AE=CF=BF﹣BC=10 ﹣10,
∴BE=AB﹣AE=10﹣(10 ﹣10)=20﹣10 ,
即BE的長為20﹣10 ;
【解析】由四邊形ABCD正方形,BF=BD=10 ,由DF⊥DE,易證得△ADE≌△CDF,即可求得BE的長;
【考點(diǎn)精析】本題主要考查了正方形的性質(zhì)的相關(guān)知識點(diǎn),需要掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)在Rt中, 且是方程的根.
(1)求和的值;
(2)如圖(2),有一個(gè)邊長為的等邊三角形從出發(fā),以1厘米每秒的速度沿方向移動,至全部進(jìn)入與為止,設(shè)移動時(shí)間為xs, 與重疊部分面積為y,試求出y與x的函數(shù)關(guān)系式并注明x的取值范圍;
(3)試求出發(fā)后多久,點(diǎn)在線段上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:正方形ABCD中,AB=8,點(diǎn)O為邊AB上一動點(diǎn),以點(diǎn)O為圓心,OB為半徑的⊙O交邊AD于點(diǎn)E(不與點(diǎn)A、D重合),EF⊥OE交邊CD于點(diǎn)F.設(shè)BO=x,AE=y.
(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)在點(diǎn)O運(yùn)動的過程中,△EFD的周長是否發(fā)生變化?如果發(fā)生變化,請用x的代數(shù)式表示△EFD的周長;如果不變化,請求出△EFD的周長;
(3)以點(diǎn)A為圓心,OA為半徑作圓,在點(diǎn)O運(yùn)動的過程中,討論⊙O與⊙A的位置關(guān)系,并寫出相應(yīng)的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知含鹽率為15%的鹽水a(chǎn) g,則式子a-15%a所表示的量是( )
A. 鹽水的質(zhì)量 B. a g鹽水中含有水的質(zhì)量
C. 鹽水的濃度 D. a g鹽水中含有鹽的質(zhì)量
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(﹣1,0),(3,0),將線段AB先向上平移2個(gè)單位長度,再向右平移1個(gè)單位長度,得到線段CD,連接AC,BD,構(gòu)成平行四邊形ABDC.
(1)請寫出點(diǎn)C的坐標(biāo)為 , 點(diǎn)D的坐標(biāo)為 , S四邊形ABDC;
(2)點(diǎn)Q在y軸上,且S△QAB=S四邊形ABDC , 求出點(diǎn)Q的坐標(biāo);
(3)如圖(2),點(diǎn)P是線段BD上任意一個(gè)點(diǎn)(不與B、D重合),連接PC、PO,試探索∠DCP、∠CPO、∠BOP之間的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】D、E是△ABC的AB、AC邊上的點(diǎn),DE∥BC, AD=2,DB=3,DE=1,則BC=__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com