【題目】如圖,在中, AD平分∠CAB交BC于點(diǎn)E. 若∠BDA=90°,E是AD中點(diǎn),DE=2,AB=5,則AC的長為( )
A.1B.C.D.
【答案】D
【解析】
過點(diǎn)C作CF⊥AD于F,易求AE=2,AD=4,BD==3由角平分線性質(zhì)得出∠CAF=∠DAB,由tan∠DAB=,推出,則AF=,由tan∠BED=,∠CEF=∠BED,得出則EF=,由AF+EF=AE=2,求出CF=1,AF=,則AC=.
解:過點(diǎn)C作CF⊥AD于F,如圖所示:
∵E是AD中點(diǎn),DE=2,
∴AE=2,AD=4,BD==3
∵AD平分∠CAB,
∴∠CAF=∠DAB,
∵tan∠DAB=
∴
∴AF=
∵tan∠BED=,∠CEF=∠BED,
∴則EF=,
∵AF+EF=AE=2,
∴CF=1,AF=,
∴AC= =.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列分式方程解應(yīng)用題
“互聯(lián)網(wǎng)+”已經(jīng)成為我們生活中不可或缺的一部分,例如OFO.摩拜等互聯(lián)網(wǎng)共享單車就為城市短距離出行難提俱了解決方案,小明每天乘坐公交汽車上學(xué),他家與公交站臺(tái)相距1.2km,現(xiàn)在每天租用共享單車到公交站臺(tái)所花時(shí)間比過去步行少12min,已知小明騎自行車的平均速度是步行平均速度的2.5倍,求小明步行的平均速度是多少km/h?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, , ,以點(diǎn)為頂點(diǎn)、為腰在第三象限作等腰.
()求點(diǎn)的坐標(biāo).
()如圖, 為軸負(fù)半軸上一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)沿軸負(fù)半軸向下運(yùn)動(dòng)時(shí),以為頂點(diǎn), 為腰作等腰,過作軸于點(diǎn),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,動(dòng)點(diǎn)從點(diǎn)開始沿著邊向點(diǎn)以的速度移動(dòng)(不與點(diǎn)重合),動(dòng)點(diǎn)從點(diǎn)開始沿著邊向點(diǎn)以的速度移動(dòng)(不與點(diǎn)重合).若、兩點(diǎn)同時(shí)移動(dòng);
當(dāng)移動(dòng)幾秒時(shí),的面積為.
設(shè)四邊形的面積為,當(dāng)移動(dòng)幾秒時(shí),四邊形的面積為?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在Rt△ABC中, ∠ACB=90°,AC=BC, D是線段AB上一點(diǎn),連結(jié)CD,將線段CD繞點(diǎn)C 逆時(shí)針旋轉(zhuǎn)90°得到線段CE,連結(jié)DE,BE.
(1)依題意補(bǔ)全圖形;
(2)若用含的代數(shù)式表示
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請借鑒以前研究函數(shù)的經(jīng)驗(yàn),探索函數(shù)y=+2的圖象和性質(zhì).
(1)自變量x的取值范圍為 ;
(2)填寫下表,畫出函數(shù)的圖象;
x | … | ﹣5 | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 2 | 3 | 4 | 5 | 6 | 7 | … |
y | … | 1 | 0.8 | 0.5 | ﹣1 | ﹣4 | 8 |
(3)觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
(4)若x>3,則y的取值范圍為 ;若y<﹣1,則x的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)A、點(diǎn)B分別是y軸、x軸上兩個(gè)動(dòng)點(diǎn),直角邊AC交x軸于點(diǎn)D,斜邊BC交y軸于點(diǎn)E;
(1)如圖(1),已知C點(diǎn)的橫坐標(biāo)為-1,直接寫出點(diǎn)A的坐標(biāo);
(2)如圖(2), 當(dāng)?shù)妊?/span>Rt△ABC運(yùn)動(dòng)到使點(diǎn)D恰為AC中點(diǎn)時(shí),連接DE,求證:∠ADB=∠CDE;
(3)如圖(3), 若點(diǎn)A在x軸上,且A(-4,0),點(diǎn)B在y軸的正半軸上運(yùn)動(dòng)時(shí),分別以OB、AB為直角邊在第一、二象限作等腰直角△BOD和等腰直角△ABC,連結(jié)CD交y軸于點(diǎn)P,問當(dāng)點(diǎn)B在y軸的正半軸上運(yùn)動(dòng)時(shí),BP的長度是否變化?若變化請說明理由,若不變化,請求出BP的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD相交于點(diǎn)O,AB⊥AC,AB=3,BC=5,點(diǎn)P從點(diǎn)A出發(fā),沿AD以每秒1個(gè)單位的速度向終點(diǎn)D運(yùn)動(dòng).連結(jié)PO并延長交BC于點(diǎn)Q.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)求BQ的長,(用含t的代數(shù)式表示)
(2)當(dāng)四邊形ABQP是平行四邊形時(shí),求t的值
(3)當(dāng)點(diǎn)O在線段AP的垂直平分線上時(shí),直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖中實(shí)線所示,函數(shù)y=|a(x﹣1)2﹣1|的圖象經(jīng)過原點(diǎn),小明同學(xué)研究得出下面結(jié)論:
①a=1;②若函數(shù)y隨x的增大而減小,則x的取值范圍一定是x<0;
③若方程|a(x﹣1)2﹣1|=k有兩個(gè)實(shí)數(shù)解,則k的取值范圍是k>1;
④若M(m1,n),N(m2,n),P(m3,n),Q(m4,n)(n>0)是上述函數(shù)圖象的四個(gè)不同點(diǎn),且m1<m2<m3<m4,則有m2+m3﹣m1=m4.其中正確的結(jié)論有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com