【題目】已知,從下列條件中補(bǔ)充一個(gè)條件后,仍不能判定的是( )

A. B. C. D.

【答案】D

【解析】

全等三角形的判定定理有SAS,ASA,AAS,SSS(直角三角形還有HL),看看是否符合定理,即可判斷選項(xiàng).

A.△ABC△CDA

∴△ABC≌△CDA(SSS),正確,故本選項(xiàng)不符合題意;

B.∵∠B=∠D=90°,

Rt△ABCRt△CDA

∴Rt△ABC≌Rt△CDA(HL),正確,故本選項(xiàng)不符合題意;

C. 根據(jù)AB=CD,AC=AC,∠BAC=∠DCA∴△ABC≌△CDA(SAS),正確,故本選項(xiàng)不符合題意;

D.△ABC△CDA

AB=CD,∠ACB=∠CAD,AC=AC

不能推出△ABC≌△CDA(SAS),錯(cuò)誤,故本選項(xiàng)符合題意;

故答案選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一根24cm的筷子置于底面直徑為15cm,高為8cm的圓柱形水杯中,設(shè)筷子露在杯子外面的長(zhǎng)度為hcm,則h的取值范圍是( )

A. h≤17 B. h≥8 C. 15≤h≤16 D. 7≤h≤16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填寫推理理由,將過程補(bǔ)充完整:

如圖,已知ADBC于點(diǎn)D,EFBC于點(diǎn)F,AD平分BAC.求證:E=1.

證明:∵AD⊥BC,EF⊥BC(已知),

∴∠ADC=∠EFC=90°(垂直的定義).

____________(_____________).

∴∠1=_____(_____________),

∠E=_____(_______________).

又∵AD平分∠BAC(已知),

_____________

∴∠1=∠E(等量代換).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017黑龍江省齊齊哈爾市,第25題,10分)低碳環(huán)保,綠色出行的理念得到廣大群眾的接受,越來越多的人再次選擇自行車作為出行工具,小軍和爸爸同時(shí)從家騎自行車去圖書館,爸爸先以150/分的速度騎行一段時(shí)間,休息了5分鐘,再以m/分的速度到達(dá)圖書館,小軍始終以同一速度騎行,兩人行駛的路程y(米)與時(shí)間x(分鐘)的關(guān)系如圖,請(qǐng)結(jié)合圖象,解答下列問題:

(1)a= b= m= ;

(2)若小軍的速度是120/分,求小軍在途中與爸爸第二次相遇時(shí),距圖書館的距離;

(3)在(2)的條件下,爸爸自第二次出發(fā)至到達(dá)圖書館前,何時(shí)與小軍相距100米?

(4)若小軍的行駛速度是v/分,且在途中與爸爸恰好相遇兩次(不包括家、圖書館兩地),請(qǐng)直接寫出v的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】人和人之間講友情,有趣的是,數(shù)與數(shù)之間也有相類似的關(guān)系. 若兩個(gè)不同的自然數(shù)的所有真因數(shù)(即除了自身以外的正約數(shù))之和相等,我們稱這兩個(gè)數(shù)為“親和數(shù)”. 例如:18的約數(shù)有1、2、3、6、9、18,它的真因數(shù)之和1+2+3+6+9=21;51的約數(shù)有1、3、17、51,它的真因數(shù)之和1+3+17=21,所以18和51為“親和數(shù)”. 數(shù)還可以與動(dòng)物形象地聯(lián)系起來,我們稱一個(gè)兩頭(首位與末位)都是的數(shù)為“兩頭蛇數(shù)”.

(1)6的“親和數(shù)”為 ;將一個(gè)四位的“兩頭蛇數(shù)”去掉兩頭,得到一個(gè)兩位數(shù),它恰好是這個(gè)“兩頭蛇數(shù)”的約數(shù),求滿足條件的“兩頭蛇數(shù)”.

(2)已知兩個(gè)“親和數(shù)”的真因數(shù)之和都等于15,且這兩個(gè)“親和數(shù)”中較大的數(shù)能將一個(gè)正中間數(shù)位(百位)上的數(shù)為4的五位“兩頭蛇數(shù)”整除,若這個(gè)五位“兩頭蛇數(shù)”的千位上的數(shù)字小于十位上的數(shù)字,求滿足條件的“兩頭蛇數(shù)”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果對(duì)于某一特定范圍內(nèi)的x的任意允許值,P=|10﹣2x|+|10﹣3x|+|10﹣4x|+|10﹣5x|+…+|10﹣10x|為定值,則此定值是( 。

A. 20 B. 30 C. 40 D. 50

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上點(diǎn) A、B 到表示-2 的點(diǎn)的距離都為 6,P 為線段 AB 上任一點(diǎn),C,D 兩點(diǎn)分別從 P,B 同時(shí)向 A 點(diǎn)移動(dòng), C 點(diǎn)運(yùn)動(dòng)速度為每秒 2 個(gè)單位長(zhǎng)度,D 點(diǎn)運(yùn)動(dòng)速度 為每秒 3 個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為 t .

(1)A 點(diǎn)表示數(shù)為 ,B 點(diǎn)表示的數(shù)為 ,AB= .

(2)若 P 點(diǎn)表示的數(shù)是 0,

①運(yùn)動(dòng) 1 秒后,求 CD 的長(zhǎng)度;

②當(dāng) D BP 上運(yùn)動(dòng)時(shí),求線段 AC、CD 之間的數(shù)量關(guān)系式.

(3)若 t=2 秒時(shí),CD=1,請(qǐng)直接寫出 P 點(diǎn)表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初一(1)班針對(duì)“你最喜愛的課外活動(dòng)項(xiàng)目”對(duì)全班學(xué)生進(jìn)行調(diào)查(每名學(xué)生分別選一個(gè)活動(dòng)項(xiàng)目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計(jì)表,繪制成扇形統(tǒng)計(jì)圖.

根據(jù)以上信息解決下列問題:
(1) ,
(2)扇形統(tǒng)計(jì)圖中機(jī)器人項(xiàng)目所對(duì)應(yīng)扇形的圓心角度數(shù)為 ;
(3)從選航模項(xiàng)目的 名學(xué)生中隨機(jī)選取 名學(xué)生參加學(xué)校航模興趣小組訓(xùn)練,請(qǐng)用列舉法(畫樹狀圖或列表)求所選取的 名學(xué)生中恰好有 名男生、 名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點(diǎn)D,則D為BC的中點(diǎn),∠BAD= ∠BAC=60°,于是 = = ; 遷移應(yīng)用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠ADE=120°,D,E,C三點(diǎn)在同一條直線上,連接BD.

(1)①求證:△ADB≌△AEC;②請(qǐng)直接寫出線段AD,BD,CD之間的等量關(guān)系式;
(2)拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點(diǎn)C關(guān)于BM的對(duì)稱點(diǎn)E,連接AE并延長(zhǎng)交BM于點(diǎn)F,連接CE,CF.
①證明△CEF是等邊三角形;
②若AE=5,CE=2,求BF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案