【題目】如圖的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直線AG分別交DE、BC于M、N兩點.若∠B=90°,AB=4,BC=3,EF=1,則BN的長度為何?( 。
A.
B.
C.
D.

【答案】D
【解析】解:∵四邊形DEFG是正方形,
∴DE∥BC,GF∥BN,且DE=GF=EF=1,
∴△ADE∽△ACB,△AGF∽△ANB,
①, ②,由①可得, ,解得:AE= ,將AE= 代入②,得: ,解得:BN= ,
故選:D.
由DE∥BC可得 求出AE的長,由GF∥BN可得 ,將AE的長代入可求得BN.本題主要考查正方形的性質及相似三角形的判定與性質,根據(jù)相似三角形的性質得出AE的長是解題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)題意解答
(1)如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC、CD上的點,且∠EAF=60°,延長FD到點G,使DG=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得線段BE、EF、FD之間的數(shù)量關系為

(2)如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是BC、CD上的點,且∠EAF= ∠BAD,線段BE、EF、FD之間存在什么數(shù)量關系,為什么?

(3)如圖3,點A在點O的北偏西30°處,點B在點O的南偏東70°處,且AO=BO,點A沿正東方向移動249米到達E處,點B沿北偏東50°方向移動334米到達點F處,從點O觀測到E、F之間的夾角為70°,根據(jù)(2)的結論求E、F之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠A=60°,∠B=58°.甲、乙兩人想在△ABC外部取一點D,使得△ABC與△DCB全等,其作法如下:
(甲)①作∠A的角平分線L.
②以B為圓心,BC長為半徑畫弧,交L于D點,則D即為所求.
(乙)①過B作平行AC的直線L.
②過C作平行AB的直線M,交L于D點,則D即為所求.
對于甲、乙兩人的作法,下列判斷何者正確?(  )

A.兩人皆正確
B.兩人皆錯誤
C.甲正確,乙錯誤
D.甲錯誤,乙正確

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=AD,BC=DC,∠A=90°,∠ABC=105°.若AB=5 ,則△ABD外心與△BCD外心的距離為何?( 。
A.5
B.5
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算,正確的是( )
A.(﹣2)2=4
B.
C.46÷(﹣2)6=64
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一個安裝有進出水管的30升容器,水管每單位時間內進出的水量是一定的,設從某時刻開始的4分鐘內只進水不出水,在隨后的8分鐘內既進水又出水,得到水量(升)與時間(分)之間的函數(shù)關系如圖所示.根據(jù)圖象回答下列問題:

(1)求每分鐘進水多少升;

(2)若12分鐘后只放水,不進水,求需要多長時間可以把水放完;

(3)若從一開始進出水管同時打開,求需要多長時間可以將容器灌滿。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖O是邊長為9的等邊三角形ABC內的任意一點,且ODBC,交AB于點D,OFAB,交AC于點F,OEAC,交BC于點E,則OD+OE+OF的值為(  )

A. 3 B. 6 C. 8 D. 9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某山頂上建有手機信號中轉塔AB,在地面D處測得塔尖的仰角∠ADC=60°,塔底的仰角∠BDC=45°,點D距離塔AB所在直線的距離DC為100米,求手機信號中轉塔AB的高度(參考數(shù)據(jù): ≈1.414, ≈1.732,結果保留整數(shù)).

查看答案和解析>>

同步練習冊答案