【題目】閱讀材料:

a,b都是非負(fù)實數(shù)ab2.當(dāng)且僅當(dāng)ab”成立.

證明: ()20,a2b0.

ab2.當(dāng)且僅當(dāng)ab,”成立.

舉例應(yīng)用:

已知x>0,求函數(shù)y2x的最小值.

解:y2x≥2=4.當(dāng)且僅當(dāng)2x,x=1時,=”成立.

當(dāng)x=1時,函數(shù)取得最小值,y最小4.

問題解決:

汽車的經(jīng)濟(jì)時速是指汽車最省油的行駛速度.某種汽車在每小時70~110公里之間行駛(含70公里和110公里)每公里耗油()升.若該汽車以每小時x公里的速度勻速行駛,1小時的耗油量為y升.

(1)求y關(guān)于x的函數(shù)關(guān)系式(寫出自變量x的取值范圍);

(2)求該汽車的經(jīng)濟(jì)時速及經(jīng)濟(jì)時速的百公里耗油量(結(jié)果保留小數(shù)點后一位).

【答案】(1)y (70≤x≤110)(2)11.1升.

【解析】試題分析 根據(jù)耗油總量=每公里的耗油量×行駛的速度,列出函數(shù)關(guān)系式即可.
經(jīng)濟(jì)時速就是耗油量最小時的速度.

試題解析: ∵汽車在每小時公里之間行駛時(含公里和公里)每公里耗油升.

根據(jù)材料得: 有最小值,

解得:

該汽車的經(jīng)濟(jì)時速為千米/小時.

當(dāng)時百公里耗油量為升.

答: 關(guān)于的函數(shù)關(guān)系式為:

該汽車的經(jīng)濟(jì)時速為千米/小時,經(jīng)濟(jì)時速的百公里耗油量為升.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】m,n互為相反數(shù),則m4n________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】地球離太陽約有150 000 000千米,用科學(xué)記數(shù)法表示為千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若等腰三角形的周長為12,其中有一條邊為5,則另兩條邊長______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家商場進(jìn)行促銷活動,甲商場采用滿200100的促銷方式,即購買商品的總金額滿200元但不足400元,少付100元;滿400元但不足600元,少付200元;……,乙商場按顧客購買商品的總金額打6折促銷.

1)若顧客在甲商場購買了510元的商品,付款時應(yīng)付多少錢?

2)若顧客在甲商場購買商品的總金額為x400x600)元,優(yōu)惠后得到商家的優(yōu)惠率為pp=),寫出px之間的函數(shù)關(guān)系式,并說明px的變化情況;

3)品牌、質(zhì)量、規(guī)格等都相同的某種商品,在甲乙兩商場的標(biāo)價都是x200x400)元,你認(rèn)為選擇哪家商場購買商品花錢較少?請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某次知識競賽共有20道題,每題答對得5分,答錯或不答都扣3分.小明共得了68分,那么小明答對了幾道題?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABO的頂點A(a、b)是一次函數(shù)y=x+m的圖像與反比例函數(shù)的圖像在第一象限的交點,且SABO=3。

根據(jù)這些條件你能夠求出反比例函數(shù)的解析式嗎?如果能夠,請你求出來,如果不能,請說明理由。

你能夠求出一次函數(shù)的函數(shù)關(guān)系式嗎?如果能,請你求出來,如果不能,請你說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+cx軸交于A(﹣3,0)、B(1,0)兩點,與y軸交于點C,D是拋物線的頂點,E是對稱軸與x軸的交點.

(1)求拋物線的解析式,并在﹣4x2范圍內(nèi)畫出此拋物線的草圖;

(2)若點F和點D關(guān)于x軸對稱,點Px軸上的一個動點,過點PPQOF交拋物線于點Q,是否存在以點O、F、P、Q為頂點的平行四邊形?若存在,求出點P坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AC=BC,C=90°,ADABC的角平分線,DEAB,垂足為E

1)已知CD=4cm,求AC的長;

2)求證:AB=AC+CD

查看答案和解析>>

同步練習(xí)冊答案