【題目】如圖1,已知拋物線;C1y=﹣x+2)(xm)(m0)與x軸交于點B、C(點B在點C的左側(cè)),與y軸交于點E

1)求點B、點C的坐標;

2)當BCE的面積為6時,若點G的坐標為(0,b),在拋物線C1的對稱軸上是否存在點H,使得BGH的周長最小,若存在,則求點H的坐標(用含b的式子表示);若不存在,則請說明理由;

3)在第四象限內(nèi),拋物線C1上是否存在點F,使得以點B、C、F為頂點的三角形與BCE相似?若存在,求m的值;若不存在,請說明理由.

【答案】1)點B、C的坐標分別為:(﹣20)、(m,0);(2)存在,點H1,b);(3)存在,m2

【解析】

1 ,令y0,則x=﹣2m,即可求解;

2)點B關(guān)于函數(shù)對稱軸的對稱點為點Cm,0),連接CE交對稱軸于點H,則點H為所求,即可求解;

3)分BEC∽△BCF、BEC∽△FCB兩種情況,分別求解即可.

解:(1,令y0,則x=﹣2m,

故點BC的坐標分別為:(﹣2,0)、(m,0);

2)存在,理由:

,令x0,則y2,故點E0,2),

BCE的面積為: ,解得:m4,

則拋物線的對稱軸為: ,

B關(guān)于函數(shù)對稱軸的對稱點為點Cm,0),連接CE交對稱軸于點H,則點H為所求,

將點CE的坐標代入一次函數(shù)表達式并解得:

直線CE的表達式為: ,當x1時, ,

故點H1,b);

3)∵OEOB2,故∠EBO45°,

過點FFTx軸于點F;

①當BEC∽△BCF時,

BC2BEBF,∠FBOEBO45°

則直線BF的函數(shù)表達式為:y=﹣x2,故點Fx,﹣x2);

將點F的坐標代入拋物線表達式得:

解得:x=﹣2(舍去)或2m,

故點F2m,﹣2m2),

BC2BEBF,

解得: (舍去負值),

②當BEC∽△FCB時,

BC2BFEC,∠CBF=∠ECO

BFT∽△COE,

,則點

將點F的坐標代入拋物線表達式得:

解得:x=﹣2(舍去)或m+2;

則點

BC2BFEC,則

化簡得:m3+4m2+4mm3+4m2+4m+16,

此方程無解;

綜上,m2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在某一路段,規(guī)定汽車限速行駛,交通警察在此限速路段的道路上設(shè)置了監(jiān)測區(qū),其中點CD為監(jiān)測點,已知點C、D、B在同一直線上,且ACBC,CD400米,tanADC2,∠ABC35°

1)求道路AB段的長(結(jié)果精確到1米)

2)如果道路AB的限速為60千米/時,一輛汽車通過AB段的時間為90秒,請你判斷該車是否是超速,并說明理由;參考數(shù)據(jù):sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為迎接2020年中考,某中學對全校九年級學生進行了一次數(shù)學期末模擬考試,并隨機抽取了部分學生的測試成績作為樣本進行分析,繪制成了如下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中提供的信息解答下列問題:

1)在這次調(diào)查中,一共調(diào)查了多少名學生;

2)將條形統(tǒng)計圖補充完整;

3)若該中學九年級共有860人參加了這次數(shù)學考試,估計該校九年級共有多少名學生的數(shù)學成績可以達到優(yōu)秀?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,按以下步驟作圖:以點A為圓心,AB的長為半徑作弧,交AD于點F;②分別以點F,B為圓心大于FB的長為半徑作弧,兩弧在∠DAB內(nèi)交于點G;③作射線AG,交邊BC于點E,連接EF.若AB=5BF=8,則四邊形ABEF的面積為(


A.12B.20C.24D.48

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx+c的頂點坐標為(1,2),那么下列結(jié)論中:①abc0;②2a+b═0;③b24ac0;④若關(guān)于x的一元二次方程ax2+bx+cm0沒有實數(shù)根,則m2;⑤方程|ax2+bx+c|1有四個根,則這四個根的和為4.正確的個數(shù)為( 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù),探究函數(shù)圖象和性質(zhì)過程如下:

1)下表是yx的幾組值,則解析式中的m   ,表格中的n   ;

x

5

4

3

2

1

0

1

2

3

4

5

6

y

1

3

4

3

n

0

2)在平面直角坐標系中描出表格中各點,并畫出函數(shù)圖象:

3)若Ax1,y1)、Bx2,y2)、Cx3y3)為函數(shù)圖象上的三個點,其中x2+x34且﹣1x10x22x34,則y1、y2、y3之間的大小關(guān)系是   

4)若直線yk+1與該函數(shù)圖象有且僅有一個交點,則k的取值范圍為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知點的橫坐標為2,將點向右平移2個單位,再向下平移2個單位得到點,且、兩點均在雙曲線上.

1)求反比例函數(shù)的解析式.(2)若直線于反比例函數(shù)的另一交點為,求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究:

操作發(fā)現(xiàn):如圖1,在中,,以點為中心,把順時針旋轉(zhuǎn),得到;再以點為中心,把逆時針旋轉(zhuǎn),得到.連接.的位置關(guān)系為平行;

探究證明:如圖2,當是銳角三角形,時,將按照(1)中的方式,以點為中心,把順時針旋轉(zhuǎn),得到;再以點為中心,把逆時針旋轉(zhuǎn),得到.連接,

①探究的位置關(guān)系,寫出你的探究結(jié)論,并加以證明;

②探究的位置關(guān)系,寫出你的探究結(jié)論,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】木工師傅可以用角尺測量并計算出圓的半徑r.用角尺的較短邊緊靠⊙O,角尺的頂點B(∠B90°),并使較長邊與⊙O相切于點C

1)如圖,ABr,較短邊AB8cm,讀得BC長為12cm,則該圓的半徑r為多少?

2)如果AB8cm,假設(shè)角尺的邊BC足夠長,若讀得BC長為acm,則用含a的代數(shù)式表示r   

查看答案和解析>>

同步練習冊答案