【題目】如圖,在四邊形中,為一條對(duì)角線,,,,為的中點(diǎn),連接.
(1)求證:四邊形為菱形;
(2)連接,若平分,,求的長(zhǎng).
【答案】(1)見解析;(2)
【解析】
(1)由DE=BC,DE∥BC,證得四邊形BCDE是平行四邊形,,再證明BE=DE即可得到結(jié)論;
(2)由AD∥BC,AC平分∠BAD證得AB=BC=2,求出∠ADB=30°,,再利用三角函數(shù)求出AC.
(1)∵,為的中點(diǎn),
∴DE=BC,
∵AD∥BC,
∴四邊形BCDE是平行四邊形,
∵,AE=DE,
∴BE=DE,
∴四邊形BCDE是菱形;
(2)連接AC,
∵AD∥BC,AC平分∠BAD,
∴∠BAC=∠DAC=BCA,
∴AB=BC=2,
∵AD=2BC=4,
∴sin∠ADB=,
∴∠ADB=30°,
∴∠DAC=30°,∠ADC=60°,
在Rt△ACD中,AD=4,
∴AC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,,,,, ,動(dòng)點(diǎn),同時(shí)從點(diǎn)出發(fā),點(diǎn)以的速度沿折線運(yùn)動(dòng)到點(diǎn),點(diǎn)以的速度沿運(yùn)動(dòng)到點(diǎn),設(shè),同時(shí)出發(fā)時(shí),的面積為,則與的函數(shù)圖象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù)且),已知當(dāng)時(shí),;當(dāng)時(shí),,請(qǐng)對(duì)該函數(shù)及其圖像進(jìn)行如下探究:
(1)求函數(shù)的解析式;
(2)如圖,請(qǐng)?jiān)谄矫嬷苯亲鴺?biāo)系中,畫出該函數(shù)的圖像;
(3)結(jié)合所畫函數(shù)圖像,請(qǐng)寫出該函數(shù)的一條性質(zhì);
(4)解決問題:若函數(shù)與至少有兩個(gè)公共點(diǎn),請(qǐng)直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲樓AB高20米,乙樓CD高10米,兩棟樓之間的水平距離BD=30m,為了測(cè)量某電視塔EF的高度,小明在甲樓樓頂A處觀測(cè)電視塔塔頂E,測(cè)得仰角為37°,小明在乙樓樓頂C處觀測(cè)電視塔塔頂E,測(cè)得仰角為45°,求該電視塔的高度EF.
(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某人在山坡坡腳處測(cè)得電視塔尖點(diǎn)的仰角為,沿山坡向上走到處再測(cè)得點(diǎn)的仰角為,已知米,山坡坡度,且在同一條直線上,其中測(cè)傾器高度忽略不計(jì).
(1)求電視塔的高度;(計(jì)算結(jié)果保留根號(hào)形式)
(2)求此人所在位置點(diǎn)的鉛直高度.(結(jié)果精確到0.1米,參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,與軸交于點(diǎn),將點(diǎn)向右平移兩個(gè)單位長(zhǎng)度,得到點(diǎn),點(diǎn)在拋物線上.
(1)①直接寫出拋物線的對(duì)稱軸是__________;
②用含的代數(shù)式表示;
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).點(diǎn)恰好為整點(diǎn),若拋物線在點(diǎn)、之間的部分與線段所圍成的區(qū)域內(nèi)(不含邊界)恰有兩個(gè)整點(diǎn),結(jié)合函數(shù)圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙P的直徑,點(diǎn)C在⊙P上,D為⊙P外一點(diǎn),且∠ADC=90°,2∠B+∠DAB=180°.
(1)證明:直線CD為⊙P的切線;
(2)若DC=2,AD=4,求⊙P的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶一中開展了“愛生活愛運(yùn)動(dòng)”的活動(dòng),以鼓勵(lì)學(xué)生積極參與體育鍛煉.為了解學(xué)生每周體育鍛煉時(shí)間,學(xué)校在活動(dòng)之前對(duì)八年級(jí)同學(xué)進(jìn)行了抽樣調(diào)査,并根據(jù)調(diào)査結(jié)果將學(xué)生每周的體育鍛煉時(shí)間分為3小時(shí)、4小時(shí)、5小時(shí)、6小時(shí)、7小時(shí)共五種情況.小明根據(jù)調(diào)查結(jié)構(gòu)制作了如圖兩幅統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問題:
(整理數(shù)據(jù))
“愛生活愛運(yùn)動(dòng)”的活動(dòng)結(jié)束之后,再次抽查這部分學(xué)生的體育鍛煉時(shí)間:
一周體育鍛煉時(shí)間(小時(shí)) | 3 | 4 | 5 | 6 | 7 |
人數(shù) | 3 | 5 | 15 | a | 10 |
活動(dòng)之后部分學(xué)生體育鍛煉時(shí)間的統(tǒng)計(jì)表
(分析數(shù)據(jù))
平均數(shù) | 中位數(shù) | 眾數(shù) | |
活動(dòng)之前鍛煉時(shí)間(小時(shí)) | 5 | 5 | 5 |
活動(dòng)之后鍛煉時(shí)間(小時(shí)) | 5.52 | b | c |
請(qǐng)根據(jù)調(diào)查信息
(1)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算a= ,b= 小時(shí),c= 小時(shí);
(2)小亮同學(xué)在活動(dòng)之前與活動(dòng)之后的這兩次調(diào)查中,體育鍛煉時(shí)間均為5小時(shí),根據(jù)體育鍛煉時(shí)間由多到少進(jìn)行排名統(tǒng)計(jì),請(qǐng)問他在被調(diào)查同學(xué)中體育鍛煉時(shí)間排名靠前的是 (填“活動(dòng)之前”或“活動(dòng)之后”),理由是 ;
(3)已知八年級(jí)共2200名學(xué)生,請(qǐng)估算全年級(jí)學(xué)生在活動(dòng)結(jié)束后,每周體育鍛煉時(shí)間至少有6小時(shí)的學(xué)生人數(shù)有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象與x軸,y軸分別相交于A,B兩點(diǎn),且與反比例函數(shù)y=交于點(diǎn)C,D.作CE⊥x軸,垂足為E,CF⊥y軸,垂足為F.點(diǎn)B為OF的中點(diǎn),四邊形OECF的面積為16,點(diǎn)D的坐標(biāo)為(4,﹣b).
(1)求一次函數(shù)表達(dá)式和反比例函數(shù)表達(dá)式;
(2)求出點(diǎn)C坐標(biāo),并根據(jù)圖象直接寫出不等式kx+b≤的解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com