【題目】如圖以正五邊形ABCDE的頂點A為圓心,AE為半徑作圓弧交BA的延長線于點A′,再以點B為圓心,BA′為半徑作圓弧交CB的延長線于B′,依次進行.得到螺旋線,再順次連結EA′,AB′,BC′,CD′,DE′,得到5塊陰影區(qū)域,若記它們的面積分別為S1,S2,S3,S4,S5,且滿足S5﹣S2=1,則S4﹣S3的值為( 。
A.B.C.D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O直徑,C、D為⊙O上不同于A、B的兩點,∠ABD=2∠BAC.過點C作CE⊥DB,垂足為E,直線AB與CE相交于F點.
(1)求證:CF為⊙O的切線;
(2)若CE=2,BE=1,求BD長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,點C、D、B、F在一條直線上,且AB⊥BD,DE⊥BD,AB=CD,CE=AF.
求證:(1)△ABF≌△CDE;
(2)CE⊥AF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD中,E是對角線AC上一點,DE=EC,以AE為直徑的⊙O與CD相切于點D,點B在⊙O上,連接OB.
(1)求證:DE=OE;
(2)若CD∥AB,求證:BC是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,O是AB邊上的點,以O為圓心,OB為半徑的⊙0與AC相切于點D,BD平分∠ABC,AD=OD,AB=12,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c過等腰Rt△OAB的A,B兩點,點B在點A的右側,直角頂點A(0,3).
(1)求b,c的值.
(2)P是AB上方拋物線上的一點,作PQ⊥AB交OB于點Q,連接AP,是否存在點P,使四邊形APQO是平行四邊形?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知的半徑為 4,是圓的直徑,點是的切線上的一個動點,連接交于點,弦平行于,連接.
(1)試判斷直線與的位置關系,并說明理由;
(2)當__________時,四邊形為菱形;
(3)當___________時,四邊形為正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,P為AB上一點,且點P不與點A重合,過點P作PE⊥AB交AC邊于E點,點E不與點C重合,若AB=10,AC=8,設AP的長為x,四邊形PECB的周長為y,
(1)試證明:△AEP∽△ABC;
(2)求y與x之間的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OA=4,C是射線OA上一點,以O為圓心,OA的長為半徑作使∠AOB=152°,P是上一點,OP與AB相交于點D,點P′與P關于直線OA對稱,連接CP,
嘗試:
(1)點P′在所在的圓 (填“內”“上”或“外”);
(2)AB= .
發(fā)現(xiàn):
(1)PD的最大值為 ;
(2)當=2π,∠OCP=28時,判斷CP與所在圓的位置關系探究當點P′與AB的距離最大時,求AP的長.(注:sin76°=cos14°=)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com