【題目】如圖①,定義:直線與x、y軸分別相交于A、B兩點(diǎn),將繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到,過(guò)點(diǎn)A、B、D的拋物線P叫做直線的“糾纏拋物線”,反之,直線叫做P的“糾纏直線",兩線“互為糾纏線”.
(1)若,則糾纏物線P的函數(shù)解析式是____________.
(2)判斷并說(shuō)明與是否“互為糾纏線”.
(3)如圖②,若糾纏直線,糾纏拋物線P的對(duì)稱軸與相交于點(diǎn)E,點(diǎn)F在上,點(diǎn)Q在P的對(duì)稱軸上,當(dāng)以點(diǎn)C、E、Q、F為頂點(diǎn)的四邊形是以為一邊的平行四邊形時(shí),求點(diǎn)Q的坐標(biāo).
【答案】答案見(jiàn)解析.
【解析】
(1)若l:y=-2x+2,則點(diǎn)A、B、C、D的坐標(biāo)分別為:(1,0)、(0,2)、(0,1)、(-2,0),則拋物線的表達(dá)式為:y=a(x+2)(x-1),即可求解;
(2)同理:點(diǎn)A、B、C、D的坐標(biāo)分別為:(k,0)、(0,2k)、(0,k)、(-2k,0),則拋物線的表達(dá)式為:y=a(x+2k)(x-k),即可求解;
(3)以點(diǎn)C、E、Q、F為頂點(diǎn)的四邊形是以CE為一邊的平行四邊形時(shí),由題意得:|xQ-xF|=1,即:m+1=±1,即可求解.
解:(1)若l:y=-2x+2,則點(diǎn)A、B、C、D的坐標(biāo)分別為:(1,0)、(0,2)、(0,1)、(-2,0),
則拋物線的表達(dá)式為:y=a(x+2)(x-1),
將點(diǎn)B的坐標(biāo)代入上式得:2=a(0+2)(0-1),解得:a=-1,
故答案為:y=-x2-x+2;
(2)同理:點(diǎn)A、B、C、D的坐標(biāo)分別為:(k,0)、(0,2k)、(0,k)、(-2k,0),
則拋物線的表達(dá)式為:y=a(x+2k)(x-k),
將點(diǎn)B的坐標(biāo)代入上式并解得:a= ,
故拋物線的表達(dá)式為:y=
故y=-2x+2k與y=“互為糾纏線”;
點(diǎn)A、B、C、D的坐標(biāo)分別為:(2,0)、(0,4)、(0,2)、(-4,0),
同理可得:拋物線的表達(dá)式為:y=
拋物線的對(duì)稱軸為:x=-1,
設(shè)點(diǎn)F(m,-2m+4),點(diǎn)Q(-1,n),
將點(diǎn)C、D的坐標(biāo)代入一次函數(shù)表達(dá)式并求得:
直線CD的表達(dá)式為:y= x+2,
點(diǎn)CE橫坐標(biāo)差為1,故縱坐標(biāo)差為,
以點(diǎn)C、E、Q、F為頂點(diǎn)的四邊形是以CE為一邊的平行四邊形時(shí),
由題意得:|xQ-xF|=1,即:m+1=±1,
解得:m=0或-2,
當(dāng)m=0時(shí),點(diǎn)F(0,4),則點(diǎn)Q(-1, );
同理當(dāng)m=-2時(shí),點(diǎn)Q(-1, );
綜上,點(diǎn)Q坐標(biāo)為:Q(-1,)或Q(-1,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)水果店張阿姨以每斤2元的價(jià)格購(gòu)進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤,通過(guò)調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價(jià)銷售.
(1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為半圓O的直徑,點(diǎn)C為半圓上任一點(diǎn).
(1)若∠BAC=30°,過(guò)點(diǎn)C作半圓O的切線交直線AB于點(diǎn)P.求證:△PBC≌△AOC;
(2)若AB=6,過(guò)點(diǎn)C作AB的平行線交半圓O于點(diǎn)D.當(dāng)以點(diǎn)A,O,C,D為頂點(diǎn)的四邊形為菱形時(shí),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A在⊙0上,點(diǎn)P是⊙0外一點(diǎn).PA切⊙0于點(diǎn)A.連接OP交⊙0于點(diǎn)D,作AB⊥OP于點(diǎn)C,交⊙0于點(diǎn)B,連接PB.
(1)求證:PB是⊙0的切線;
(2)若PC=9,AB=6,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程.
(1)當(dāng)時(shí),利用根的判別式判斷方程根的情況,
(2)若方程有兩個(gè)相等的非零實(shí)數(shù)根,寫出一組滿足條件的的值,并求此時(shí)方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工程隊(duì)承擔(dān)了一段長(zhǎng)為1500米的道路綠化工程,施工時(shí)有兩種綠化方案:甲方案是綠化1米的道路需要A型花2枝和B型花3枝,成本是22元;乙方案是綠化1米的道路需要A型花1枝和B型花5枝,成本是25元.現(xiàn)要求按照乙方案綠化道路的總長(zhǎng)度不能少于按甲方案綠化道路的總長(zhǎng)度的2倍.
(1)求A型花和B型花每枝的成本分別是多少元?
(2)求當(dāng)按甲方案綠化的道路總長(zhǎng)度為多少米時(shí),所需工程的總成本最少?總成本最少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校教學(xué)樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22時(shí),
教學(xué)樓在建筑物的墻上留下高2m的影子CE;而當(dāng)光線與地面的夾角是45時(shí),教學(xué)樓頂A在地面上的影子F與墻角C有13m的距離(B、F、C在一條直線上).
(1)求教學(xué)樓AB的高度;
(2)學(xué)校要在A、E之間掛一些彩旗,請(qǐng)你求出A、E之間的距離(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):sin22≈,cos22≈,tan22≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】科幻小說(shuō)《實(shí)驗(yàn)室的故事》中,有這樣一個(gè)情節(jié):科學(xué)家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過(guò)一天后,測(cè)試出這種植物高度的增長(zhǎng)情況(如下表).
由這些數(shù)據(jù),科學(xué)家推測(cè)出植物每天高度增長(zhǎng)量y是溫度x的函數(shù).且這種函數(shù)是反比例函數(shù)、一次函數(shù)和二次函數(shù)中的一種.
(1)請(qǐng)你選擇一種適當(dāng)?shù)暮瘮?shù),求出它的函數(shù)關(guān)系式,并簡(jiǎn)要說(shuō)明不選擇另外兩種函數(shù)的理由;
(2)溫度為多少時(shí),這種植物每天高度的增長(zhǎng)量最大?
(3)如果實(shí)驗(yàn)室溫度保持不變,在10天內(nèi)要使該植物高度增長(zhǎng)量的總和超過(guò)250mm,那么實(shí)驗(yàn)室的溫度x應(yīng)該在哪個(gè)范圍內(nèi)選擇?請(qǐng)直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是圓上一點(diǎn),點(diǎn)D是的中點(diǎn),延長(zhǎng)AD至點(diǎn)E,使得AB=BE.
(1)求證:△ACF∽△EBF;
(2)若BE=10,tanE=,求CF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com