(2013•成都)若正整數(shù)n使得在計(jì)算n+(n+1)+(n+2)的過(guò)程中,各數(shù)位均不產(chǎn)生進(jìn)位現(xiàn)象,則稱n為“本位數(shù)”.例如2和30是“本位數(shù)”,而5和91不是“本位數(shù)”.現(xiàn)從所有大于0且小于100的“本位數(shù)”中,隨機(jī)抽取一個(gè)數(shù),抽到偶數(shù)的概率為
7
11
7
11
分析:先確定出所有大于0且小于100的“本位數(shù)”,再根據(jù)概率公式計(jì)算即可得解.
解答:解:所有大于0且小于100的“本位數(shù)”有:1、2、10、11、12、20、21、22、30、31、32,
共有11個(gè),7個(gè)偶數(shù),4個(gè)奇數(shù),
所以,P(抽到偶數(shù))=
7
11

故答案為:
7
11
點(diǎn)評(píng):本題考查了概率公式,根據(jù)定義確定出所有的本位數(shù)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都一模)(1)計(jì)算:2cos30°-(
1
3
)-1+(-2)2×(-1)0-|-
12
|

(2)解方程:2x2-5x-7=0
(3)有兩個(gè)可以自由轉(zhuǎn)動(dòng)的均勻轉(zhuǎn)盤(pán)A、B,均被分成4等份,并在每份內(nèi)都標(biāo)有數(shù)字(如圖所示).李明和王亮同學(xué)用這兩個(gè)轉(zhuǎn)盤(pán)做游戲.閱讀下面的游戲規(guī)則,并回答下列問(wèn)題:
①用樹(shù)狀圖或列表法,求兩數(shù)相加和為零的概率;
②你認(rèn)為這個(gè)游戲規(guī)則對(duì)雙方公平嗎?若公平,請(qǐng)說(shuō)明理由;若不公平,請(qǐng)修改游戲規(guī)則中的賦分標(biāo)準(zhǔn),使游戲變得公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都一模)如圖,A,B是函數(shù)y=
k
x
(k>0)
在第一象限圖象上的兩個(gè)點(diǎn),C,D是函數(shù)y=
1
x
(x>0)
上兩點(diǎn),AC∥BD∥x軸,若
AC
BD
=m
,則△COD的面積是
1-m2
2m
1-m2
2m
(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都一模)如圖所示,已知BC是⊙O的直徑,A、D是⊙O上的兩點(diǎn).
(1)若∠ACB=58°,求∠ADC的度數(shù);
(2)當(dāng)
CD
=
1
2
AC
時(shí),連接CD、AD,其中AD與直徑BC相交于點(diǎn)E,求證:2CD2=CE•BC;
(3)在(2)的條件下,若∠COD=45°,CE=
2
,求
BC•CE
AB
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都)若關(guān)于t的不等式組
t-a≥0
2t+1≤4
,恰有三個(gè)整數(shù)解,則關(guān)于x的一次函數(shù)y=
1
4
x-a
的圖象與反比例函數(shù)y=
3a+2
x
的圖象的公共點(diǎn)的個(gè)數(shù)為
1或0
1或0

查看答案和解析>>

同步練習(xí)冊(cè)答案