【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(5,0)兩點,直線y=﹣x+3與y軸交于點C,與x軸交于點D.點P是x軸上方的拋物線上一動點,過點P作PF⊥x軸于點F,交直線CD于點E.設點P的橫坐標為m.
(1)求拋物線的解析式;
(2)若PE=5EF,求m的值;
(3)若點E′是點E關(guān)于直線PC的對稱點、是否存在點P,使點E′落在y軸上?若存在,請直接寫出相應的點P的坐標;若不存在,請說明理由.
【答案】(1)y=﹣x2+4x+5.(2)m=2或m=;
(3)理由見解析.
【解析】試題分析:(1)利用待定系數(shù)法求出拋物線的解析式;
(2)用含m的代數(shù)式分別表示出PE、EF,然后列方程求解;
(3)解題關(guān)鍵是識別出當四邊形PECE′是菱形,然后根據(jù)PE=CE的條件,列出方程求解;當四邊形PECE′是菱形不存在時,P點y軸上,即可得到點P坐標.
試題解析:(1)∵拋物線y=﹣x2+bx+c與x軸交于A (﹣1,0),B(5,0)兩點,
∴解得,
∴拋物線的解析式為y=﹣x2+4x+5.
(2)∵點P的橫坐標為m,
∴P(m,﹣m2+4m+5),E(m,﹣m+3),F(m,0).
∴PE=|yP﹣yE|=|(﹣m2+4m+5)﹣(﹣m+3)|=|﹣m2+m+2|,
EF=|yE﹣yF|=|(﹣m+3)﹣0|=|﹣m+3|.
由題意,PE=5EF,即:|﹣m2+m+2|=5|﹣m+3|=|﹣m+15|
①若﹣m2+m+2=﹣m+15,整理得:2m2﹣17m+26=0,
解得:m=2或m=;
②若﹣m2+m+2=﹣(﹣m+15),整理得:m2﹣m﹣17=0,
解得:m=或m=.
由題意,m的取值范圍為:﹣1<m<5,故m=、m==這兩個解均舍去.
∴m=2或m=.
(3)假設存在.
作出示意圖如下:
∵點E、E′關(guān)于直線PC對稱,
∴∠1=∠2,CE=CE′,PE=PE′.
∵PE平行于y軸,∴∠1=∠3,
∴∠2=∠3,∴PE=CE,
∴PE=CE=PE′=CE′,即四邊形PECE′是菱形.
當四邊形PECE′是菱形存在時,
由直線CD解析式y=﹣x+3,可得OD=4,OC=3,由勾股定理得CD=5.
過點E作EM∥x軸,交y軸于點M,易得△CEM∽△CDO,
∴==,即=,解得CE=|m|,
∴PE=CE=|m|,又由(2)可知:PE=|﹣m2+m+2|
∴|﹣m2+m+2|=|m|.
①若﹣m2+m+2=m,整理得:2m2﹣7m﹣4=0,解得m=4或m=﹣;
②若﹣m2+m+2=﹣m,整理得:m2﹣6m﹣2=0,解得m1=3+,m2=3﹣.
由題意,m的取值范圍為:﹣1<m<5,故m=3+這個解舍去.
當四邊形PECE′是菱形這一條件不存在時,
此時P點橫坐標為0,E,C,E'三點重合與y軸上,也符合題意,
∴P(0,5)
綜上所述,存在滿足條件的點P坐標為(0,5)或(﹣,)或(4,5)或(3﹣
2﹣3).
科目:初中數(shù)學 來源: 題型:
【題目】已知,△ABC滿足BC=AB,∠ABC=90°,A點在x軸的負半軸上,直角頂點B在y軸上,點C在x軸上方.
(1)如圖1所示,若A的坐標是(-3,0),點B與原點重合,則點C的坐標是_________;
(2)如圖2,過點C作CD⊥y軸于D,請判斷線段OA、OD、CD之間的數(shù)量關(guān)系并說明理由;
(3)如圖3,若x軸恰好平分∠BAC,BC與x軸交于點E,過點C作CF⊥x軸于點F,問CF與AE有怎樣的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為便于管理與場地安排,松北某中學校以小明所在班級為例,對學生參加各個體育項目進行了調(diào)查統(tǒng)計.并把調(diào)查的結(jié)果繪制了如圖所示的不完全統(tǒng)計圖,請你根據(jù)下列信息回答問題:
(1)在這次調(diào)查中,小明所在的班級參加籃球項目的同學有多少人?并補全條形統(tǒng)計圖.
(2)如果學校有800名學生,請估計全校學生中有多少人參加籃球項目.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,DC⊥BC,將梯形沿對角線BD折疊,點A恰好落在DC邊上的點E處,若∠EBC=20°,則∠EBD的度數(shù)為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商廈進貨員預測一種應季襯衫能暢銷市場,就用0.8萬元購進這種襯衫,面市后果然供不應求.于是,商廈又用1.76萬元購進了第二批這種襯衫,所購數(shù)量是第一批購進數(shù)量的2倍,但單價貴了4元,商廈銷售這種襯衫時每件預定售價都是58元.
(1)求這種襯衫原進價為每件多少元?
(2)經(jīng)過一段時間銷售,根據(jù)市場飽和情況,商廈經(jīng)理決定對剩余的100件襯衫進行打折銷售,以提高回款速度,要使這兩批襯衫的總利潤不少于6300元,最多可以打幾折?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人在相同條件下各射靶10次,每次射靶的成績情況如圖所示:
(1)請?zhí)顚懴卤?
平均數(shù) | 方差 | 中位數(shù) | 命中9環(huán)及以上的次數(shù) | |
甲 | 7 | 1.2 | 1 | |
乙 | 5.4 |
(2)請從下列四個不同的角度對這次測試結(jié)果進行分析:
①從平均數(shù)和方差相結(jié)合看;
②從平均數(shù)和中位數(shù)相結(jié)合看(分析誰的成績好些);
③從平均數(shù)和命中9環(huán)以上的次數(shù)相結(jié)合看(分析誰的成績好些);
④從折線圖上兩人射擊命中環(huán)數(shù)的走勢看(分析誰更有潛力).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com