【題目】在一個(gè)不透明的布袋里裝有4個(gè)標(biāo)有2,3,4的小球,它們的形狀、大小、質(zhì)地完全相同,小李從布袋里隨機(jī)取出一個(gè)小球,記下數(shù)字為x,小張?jiān)谑O碌?/span>3個(gè)小球中隨機(jī)取出一個(gè)小球,記下數(shù)字為y,這樣確定了點(diǎn)Q的坐標(biāo)(x,y).

(1)畫樹狀圖或列表,寫出點(diǎn)Q所有可能的坐標(biāo);

(2)求點(diǎn)Q(x,y)落在第二象限的概率.

【答案】(1)見詳解 (2)

【解析】

(1)首先根據(jù)題意畫出表格,即可得到P的所以坐標(biāo);
(2)然后由表格求得所有等可能的結(jié)果與數(shù)字x、y滿足點(diǎn) 落在第二象限的情況,再利用概率公式求解即可求得答案.

解:(1)列表得:

點(diǎn)P所有可能的坐標(biāo)有: 12種;

(2)∵共有12種等可能的結(jié)果,

其中點(diǎn)(x,y)落在第二象限的有3種,

即:,

∴點(diǎn)落在第二象限的概率為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,,,點(diǎn)EAB邊上的動(dòng)點(diǎn),過點(diǎn)B作直線CE的垂線,垂足為F,當(dāng)點(diǎn)E從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)F的運(yùn)動(dòng)路徑長(zhǎng)為(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程

1)若此方程的一個(gè)根為1,求的值;

2)求證:不論取何實(shí)數(shù),此方程都有兩個(gè)不相等的實(shí)數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,直線lymx+nm0n0)與x、y軸分別相交于A、B兩點(diǎn),將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到△COD,過點(diǎn)A、B、D的拋物線P叫做l的關(guān)聯(lián)拋物線,而l叫做P的關(guān)聯(lián)直線.

1)若ly=﹣2x+2,則P表示的函數(shù)解析式為   ;若Py=﹣x23x+4,則l表示的函數(shù)解析式為   

2)求P的對(duì)稱軸(用含m、n的代數(shù)式表示);

3)如圖②,若ly=﹣2x+4P的對(duì)稱軸與CD相交于點(diǎn)E,點(diǎn)Fl上,點(diǎn)QP的對(duì)稱軸上.當(dāng)以點(diǎn)C,EQ,F為頂點(diǎn)的四邊形是以CE為一邊的平行四邊形時(shí),求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】足球賽期間,某商店銷售一批足球紀(jì)念冊(cè),每本進(jìn)價(jià)40元,規(guī)定銷售單價(jià)不低于44元,且獲利不高于30%.試銷售期間發(fā)現(xiàn),當(dāng)銷售單價(jià)定為44元時(shí),每天可售出300本,銷售單價(jià)每漲1元,每天銷售量減少10本,現(xiàn)商店決定提價(jià)銷售.設(shè)每天銷售為本,銷售單價(jià)為.

1)請(qǐng)直接寫出之間的函數(shù)關(guān)系式和自變量的取值范圍;

2)將足球紀(jì)念冊(cè)銷售單價(jià)定為多少元時(shí),商店每天銷售紀(jì)念冊(cè)獲得的利潤(rùn)元最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3x軸的兩個(gè)交點(diǎn)分別為A、B(1,0),與y軸交于點(diǎn)D,直線AD,拋物線頂點(diǎn)為C,作CHx軸于點(diǎn)H.

(1)求拋物線的解析式;

(2)拋物線上是否存在點(diǎn)M,使得SACD=SMAB?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由;

(3)若點(diǎn)Px軸上方的拋物線上一動(dòng)點(diǎn)(點(diǎn)P與頂點(diǎn)C不重合)PQAC于點(diǎn)Q,當(dāng)PCQACH相似時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李航想利用太陽光測(cè)量樓高.他帶著皮尺來到一棟樓下,發(fā)現(xiàn)對(duì)面墻上有這棟樓的影子,針對(duì)這種情況,他設(shè)計(jì)了一種測(cè)量方案,具體測(cè)量情況如下:如示意圖,李航邊移動(dòng)邊觀察,發(fā)現(xiàn)站到點(diǎn)E處時(shí),可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時(shí),測(cè)得李航落在墻上的影子高度CD=1.2m,CE=0.6m,CA=30m(點(diǎn)A、E、C在同一直線上).已知李航的身高EF1.6m,請(qǐng)你幫李航求出樓高AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,點(diǎn)P、D分別是BC、AC邊上的點(diǎn),且∠APD=B.

(1)求證:AC·CD=CP·BP;

(2)AB=10,BC=12,當(dāng)PDAB時(shí),求BP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于OBC=CD,C=2BAD

1)求BOD的度數(shù);

2)求證:四邊形OBCD是菱形;

3)若O的半徑為r,ODA=45°,求ABD的面積(用含r的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案