【題目】在平面直角坐標(biāo)系中,拋物線(xiàn)y=ax2+bx+3x軸的兩個(gè)交點(diǎn)分別為A、B(1,0),與y軸交于點(diǎn)D,直線(xiàn)AD,拋物線(xiàn)頂點(diǎn)為C,作CHx軸于點(diǎn)H.

(1)求拋物線(xiàn)的解析式;

(2)拋物線(xiàn)上是否存在點(diǎn)M,使得SACD=SMAB?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由;

(3)若點(diǎn)Px軸上方的拋物線(xiàn)上一動(dòng)點(diǎn)(點(diǎn)P與頂點(diǎn)C不重合),PQAC于點(diǎn)Q,當(dāng)PCQACH相似時(shí),求點(diǎn)P的坐標(biāo).

【答案】12M,4)、(,)、(,)(3P,)或(

【解析】

(1)根據(jù)題意直線(xiàn)AD,可以求出點(diǎn)A坐標(biāo),然后把A、B坐標(biāo)代入表達(dá)式求出二次函數(shù)解析式即可;

(2)先求出,進(jìn)而求出,根據(jù)面積公式可求出點(diǎn)M的縱坐標(biāo),把M的縱坐標(biāo)代入表達(dá)式求出橫坐標(biāo)即可求出M的坐標(biāo);

(3) 分類(lèi)討論,首先求出直線(xiàn)CM的解析式為,再聯(lián)立兩函數(shù)解析式即可得出交點(diǎn)坐標(biāo),再利用若點(diǎn)P在對(duì)稱(chēng)軸左側(cè),只能是,得得出答案即可.

解:(1)根據(jù)題意可得:,

把點(diǎn)代入中,

得出:.

(2)如圖所示:根據(jù)(1)得:

所以:

連接AC、BC之后求出,

,已知,

的高為4,即M的縱坐標(biāo)為,

當(dāng)縱坐標(biāo)為4的時(shí)候,代入表達(dá)式:,得出:,

,

當(dāng)縱坐標(biāo)為的時(shí)候,代入表達(dá)式:,得出:,

綜合得:

(3) ①若點(diǎn)P在對(duì)稱(chēng)軸右側(cè),如圖:

只能是,得

延長(zhǎng)CPx軸于M,

設(shè),

設(shè)直線(xiàn)CM的解析式為,

則:,解得:

,

聯(lián)立:,解得:(舍去)

.

②若點(diǎn)P在對(duì)稱(chēng)軸左側(cè),如圖:

只能是,得

過(guò)ACA的垂線(xiàn)交PC于點(diǎn)F,作軸于點(diǎn)N.

,

,

,

∴點(diǎn)F坐標(biāo)為

設(shè)直線(xiàn)CF的解析式為,

,解得:,

∴直線(xiàn)CF的解析式,

聯(lián)立:,解得:(舍去)

綜合上述得:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系xOy中,x軸交于A,B兩點(diǎn),與y軸于C,D兩點(diǎn),其中,

求圓心M的坐標(biāo);

點(diǎn)P上任意一點(diǎn)不與A、D重合,連接PC,PD,作的延長(zhǎng)線(xiàn)于點(diǎn)當(dāng)點(diǎn)P上運(yùn)動(dòng)時(shí),的值發(fā)生變化嗎?若不變,求出這個(gè)值,若變化,請(qǐng)說(shuō)明理由.

如圖2,若點(diǎn)Q為直線(xiàn)上一個(gè)動(dòng)點(diǎn),連接QC,QO,當(dāng)的值最大時(shí),求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明參加某個(gè)智力競(jìng)答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān).第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題小明都不會(huì),不過(guò)小明還有一個(gè)求助沒(méi)有用(使用求助可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).

(1)如果小明第一題不使用求助,那么小明答對(duì)第一道題的概率是  

(2)如果小明將求助留在第二題使用,請(qǐng)用樹(shù)狀圖或者列表來(lái)分析小明順利通關(guān)的概率.

(3)從概率的角度分析,你建議小明在第幾題使用求助.(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線(xiàn)段AB、CD分別表示甲乙兩建筑物的高,BAAD,CDDA,垂足分別為A、D.從D點(diǎn)測(cè)到B點(diǎn)的仰角α60°,從C點(diǎn)測(cè)得B點(diǎn)的仰角β30°,甲建筑物的高AB=30

(1)求甲、乙兩建筑物之間的距離AD

(2)求乙建筑物的高CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的布袋里裝有4個(gè)標(biāo)有,23,4的小球,它們的形狀、大小、質(zhì)地完全相同,小李從布袋里隨機(jī)取出一個(gè)小球,記下數(shù)字為x,小張?jiān)谑O碌?/span>3個(gè)小球中隨機(jī)取出一個(gè)小球,記下數(shù)字為y,這樣確定了點(diǎn)Q的坐標(biāo)(x,y).

(1)畫(huà)樹(shù)狀圖或列表,寫(xiě)出點(diǎn)Q所有可能的坐標(biāo);

(2)求點(diǎn)Q(x,y)落在第二象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,.動(dòng)點(diǎn)以每秒5個(gè)單位長(zhǎng)度的速度從點(diǎn)出發(fā),沿的方向向終點(diǎn)運(yùn)動(dòng).點(diǎn)關(guān)于點(diǎn)的對(duì)稱(chēng)點(diǎn)為,過(guò)點(diǎn)于點(diǎn),以、為邊作,設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為.

1)當(dāng)點(diǎn)上運(yùn)動(dòng)時(shí),用含的代數(shù)式表示的長(zhǎng).

2)當(dāng)為菱形時(shí),求的值.

3)設(shè)的面積為,求之間的函數(shù)關(guān)系式.

4)作點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn),當(dāng)點(diǎn)落在內(nèi)部時(shí),直接寫(xiě)出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A(2,3)和點(diǎn)B(0,2),點(diǎn)A在反比例函數(shù)y= 的圖象上.作射線(xiàn)AB,再將射線(xiàn)AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)45°,交反比例函數(shù)圖象于點(diǎn)C,則點(diǎn)C的坐標(biāo)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于圓O,且ABAC,延長(zhǎng)BC到點(diǎn)D,使CDCA,連接AD交圓O于點(diǎn)E

1)求證:△ABE≌△CDE;

2)填空:

當(dāng)∠ABC的度數(shù)為   時(shí),四邊形AOCE是菱形.

AE,AB2,則DE的長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在等邊△ABC中,DBC的中點(diǎn),PAB 邊上的一個(gè)動(dòng)點(diǎn),設(shè)AP=x,圖1中線(xiàn)段DP的長(zhǎng)為y,若表示yx的函數(shù)關(guān)系的圖象如圖2所示,則△ABC的面積為( )

A. 4 B. C. 12 D.

查看答案和解析>>

同步練習(xí)冊(cè)答案