【題目】如圖, CDAB,DCB=70°,CBF=20°,EFB=130°,CEF=60°,則∠ACB=______.

【答案】50°

【解析】

由題意推出∠DCB=ABC=70°,結(jié)合∠CBF=20°,推出∠CBF=50°,即可推出EFAB,EFCD,既而推出∠ECD=110°,根據(jù)∠DCB=70°,即可推出∠ACB的度數(shù).

解:∵CDAB,∠DCB=70°,
∴∠DCB=ABC=70°,
∵∠CBF=20°,
∴∠ABF=ABC-CBF=50°,
∵∠EFB=130°,
∴∠ABF+EFB=50°+130°=180°,
EFAB;
又∵CDAB,
EFCD,
∵∠CEF=60°,
∴∠ECD=120°,
∵∠DCB=70°,
∴∠ACB=ECD-DCB
∴∠ACB=50°
故答案為:50°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖示一架水平飛行的無(wú)人機(jī)AB的尾端點(diǎn)A測(cè)得正前方的橋的左端點(diǎn)P的俯角為α其中tanα=2 ,無(wú)人機(jī)的飛行高度AH為500 米,橋的長(zhǎng)度為1255米.
①求點(diǎn)H到橋左端點(diǎn)P的距離;
②若無(wú)人機(jī)前端點(diǎn)B測(cè)得正前方的橋的右端點(diǎn)Q的俯角為30°,求這架無(wú)人機(jī)的長(zhǎng)度AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測(cè)得障礙物邊緣點(diǎn)C的俯角為30°,測(cè)得大樓頂端A的仰角為45°(點(diǎn)B,C,E在同一水平直線上),已知AB=80m,DE=10m,求障礙物B,C兩點(diǎn)間的距離(結(jié)果精確到0.1m)(參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某山區(qū)有23名中、小學(xué)生因貧困失學(xué)需要捐助,資助一名中學(xué)生的學(xué)習(xí)費(fèi)用需要a元,一名小學(xué)生的學(xué)習(xí)費(fèi)用需要b元,某校學(xué)生積極捐款,我校初中學(xué)生每個(gè)年級(jí)各自分別捐助的貧困中學(xué)生和小學(xué)生的人數(shù)情況如下表:

1)求a,b的值.

2)九年級(jí)學(xué)生的捐款解決了其余貧困中小學(xué)生的學(xué)習(xí)費(fèi)用,求九年級(jí)學(xué)生可捐助的貧困生中、小學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:至少有一組對(duì)邊相等的四邊形為“等對(duì)邊四邊形”.

1)請(qǐng)寫(xiě)出一個(gè)你學(xué)過(guò)的特殊四邊形中是“等對(duì)邊四邊形”的名稱(chēng);

2)如圖1,四邊形ABCD是“等對(duì)邊四邊形”,其中AB=CD,邊BACD的延長(zhǎng)線交于點(diǎn)M,點(diǎn)E、F是對(duì)角線AC、BD的中點(diǎn),若∠M=60°,求證:EFAB;

3)如圖2.在△ABC中,點(diǎn)DE分別在邊AC、AB上,且滿(mǎn)足∠DBC=ECBA,線段CEBD交于點(diǎn).

求證:∠BDC=AEC;

請(qǐng)?jiān)趫D中找到一個(gè)“等對(duì)邊四邊形”,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中, ,向右平移5個(gè)單位向上平移4個(gè)單位之后得到的圖象

1兩點(diǎn)的坐標(biāo)分別為 .

2)作出平移之后的圖形.

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知P1,1.過(guò)點(diǎn)P分別向x軸和y軸作垂線,垂足分別為AB.

1)點(diǎn)Q在直線AP上且與點(diǎn)P 的距離為2,則點(diǎn)Q的坐標(biāo)為 ,三角形BPQ的面積是______;

2)平移三角形ABP,若頂點(diǎn)P平移后的對(duì)應(yīng)點(diǎn)為4,3),

①畫(huà)出平移后的三角形;

②直接寫(xiě)出四邊形的面積為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)O為對(duì)角線AC的中點(diǎn),過(guò)O點(diǎn)的射線OM,ON分別交AB,BC于點(diǎn)E,F,且∠EOF=90°,BO,EF交于點(diǎn)P,則下面結(jié)論:

①圖形中全等的三角形只有三對(duì);②△EOF是等腰直角三角形;③正方形ABCD的面積等于四邊形OEBF面積的4倍;④BEBF=OA

其中正確結(jié)論的個(gè)數(shù)是(  )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明同學(xué)在點(diǎn)P處測(cè)得教學(xué)樓A位于北偏東60°方向,辦公樓B位于南偏東45°方向.小明沿正東方向前進(jìn)60米到達(dá)C處,此時(shí)測(cè)得教學(xué)樓A恰好位于正北方向.辦公樓B正好位于正南方向.求教學(xué)樓A與辦公樓B之間的距離

查看答案和解析>>

同步練習(xí)冊(cè)答案