【題目】如圖,小明同學(xué)在點(diǎn)P處測(cè)得教學(xué)樓A位于北偏東60°方向,辦公樓B位于南偏東45°方向.小明沿正東方向前進(jìn)60米到達(dá)C處,此時(shí)測(cè)得教學(xué)樓A恰好位于正北方向.辦公樓B正好位于正南方向.求教學(xué)樓A與辦公樓B之間的距離

【答案】(60+20 )米
【解析】解:由題意可知:
∠ACP=∠BCP=90°,∠APC=30°,∠BPC=45°.
在Rt△BPC中,
∵∠BCP=90°,∠B=∠BPC=45°,
∴BC=PC=60.
在Rt△ACP中,
∵∠ACP=90°,∠APC=30°,
tan30°= ,
∴AC=PCtan30°=tan30°×60=60× =20 (米).
∴AB=AC+BC=60+20 (米).
答:教學(xué)樓A與辦公樓B之間的距離是(60+20 )米.
故答案是:(60+20 )米.
根據(jù)已知條件得到BC=PC的值,再根據(jù)正切的定義求出AC=PCtan30°的值,得到AB=AC+BC的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, CDAB,DCB=70°,CBF=20°,EFB=130°,CEF=60°,則∠ACB=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是一張三角形的紙片,⊙O是它的內(nèi)切圓,點(diǎn)D是其中的一個(gè)切點(diǎn),已知AD=10cm , 小明準(zhǔn)備用剪刀沿著與⊙O相切的任意一條直線MN剪下一塊三角形(△AMN),則剪下的△AMN的周長(zhǎng)為(  )

A.20cm
B.15cm
C.10cm
D.隨直線MN的變化而變化

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y= -+1x軸、y軸分別交于點(diǎn)A、點(diǎn)B(O為坐標(biāo)原點(diǎn)),將△ABO繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°后,點(diǎn)A恰好落在點(diǎn)C處,那么點(diǎn)C的坐標(biāo)為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某城市的電視塔AB坐落在湖邊,數(shù)學(xué)老師帶領(lǐng)學(xué)生隔湖測(cè)量電視塔AB的高度,在點(diǎn)M處測(cè)得塔尖點(diǎn)A的仰角∠AMB為22.5°,沿射線MB方向前進(jìn)200米到達(dá)湖邊點(diǎn)N處,測(cè)得塔尖點(diǎn)A在湖中的倒影A′的俯角∠A′NB為45°,則電視塔AB的高度為米(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線過點(diǎn)A(2,0),B(﹣1,0),與y軸交于點(diǎn)C,且OC=2.則這條拋物線的解析式為(
A.y=x2﹣x﹣2
B.y=﹣x2+x+2
C.y=x2﹣x﹣2或y=﹣x2+x+2
D.y=﹣x2﹣x﹣2或y=x2+x+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y有最大值4,且圖象與x軸兩交點(diǎn)間的距離是8,對(duì)稱軸為x=﹣3,此二次函數(shù)的解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在△AOB中,∠AOB=90°,OA=3,OB=4.將△AOB沿x軸依次以點(diǎn)A、B、O為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn),分別得到圖②、圖③、…,則旋轉(zhuǎn)得到的圖⑧的直角頂點(diǎn)的坐標(biāo)為.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個(gè)互相重合的直角三角形,將其中的一個(gè)三角形沿點(diǎn)的方向平移到的位置,若,,且平移的距離為6,則陰影部分面積是_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案