如圖,線段AB經(jīng)過圓心O,交⊙O于點(diǎn)A、C,∠BAD=∠B=30°,邊BD交⊙O于點(diǎn)D.
(1)BD是⊙O的切線嗎?為什么?
(2)若AC=10,求線段BC的長度.
(1)BD是⊙O的切線,
證明:∵∠BAD=∠B=30°,
∴∠ADB=180°-30°-30°=120°,
∵AO=DO,
∴∠A=∠ADO=30°,
∴∠ODB=120°-30°=90°,
∴BD是⊙O的切線;

(2)∵AC=10,
∴CO=5,
∴DO=5,
∵∠B=30°,
∴BO=2DO=10,
在Rt△OBD中:BD=
BO2-DO2
=
100-25
=5
3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(原創(chuàng)題)如圖所示,平面直角坐標(biāo)系中,點(diǎn)A(2,9),B(2,3),C(3,2),D(9,2)在⊙P上,Q是⊙P上的一個動點(diǎn).
(1)在圖中標(biāo)出圓心P位置,寫出點(diǎn)P坐標(biāo);
(2)Q點(diǎn)在圓上坐標(biāo)為何值時(shí),△ABQ是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

通過不在一條直線上的三點(diǎn),可以畫出的圓有(  )
A.1個B.2個C.3個D.無數(shù)個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,矩形ABCO的面積為15,邊OA比OC大2,E為BC的中點(diǎn),以O(shè)E為直徑的⊙O′交X軸于D點(diǎn),過D點(diǎn)作DF⊥AE于F.
(1)求OA和OC的長;
(2)求證:OE=AE;
(3)求證:DF是⊙O′的切線;
(4)在邊BC上是否存在除E點(diǎn)以外的P點(diǎn),使△AOP是等腰三角形?如果存在,請寫出P點(diǎn)的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直徑與等邊△ABC的高相等的圓O分別與邊AB、BC相切于點(diǎn)D、E,邊AC過圓心O與圓O相交于點(diǎn)F、G.
(1)求證:DEAC;
(2)若△ABC的邊長為a,求△ECG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是半圓O的直徑,點(diǎn)M是半徑OA的中點(diǎn),點(diǎn)P在線段AM上運(yùn)動(不與點(diǎn)M重合),點(diǎn)Q在半圓O上運(yùn)動,且總保持PQ=PO,過點(diǎn)Q作⊙O的切線交BA的延長線于點(diǎn)C.
(1)當(dāng)∠QPA=60°時(shí),請你對△QCP的形狀做出猜想,并給予證明;
(2)當(dāng)QP⊥AB時(shí),△QCP的形狀是______三角形;
(3)由(1)、(2)得出的結(jié)論,請進(jìn)一步猜想當(dāng)點(diǎn)P在線段AM上運(yùn)動到任何位置時(shí),△QCP一定是______三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在平面上,給定了半徑為r的圓O,對于任意點(diǎn)P,在射線OP上取一點(diǎn)P′,使得OP•OP′=r2,這把點(diǎn)P變?yōu)辄c(diǎn)P的變換叫做反演變換,點(diǎn)P與點(diǎn)P′叫做互為反演點(diǎn).
(1)如圖2,⊙O內(nèi)外各一點(diǎn)A和B,它們的反演點(diǎn)分別為A和B′.求證:∠A′=∠B;
(2)如果一個圖形上各點(diǎn)經(jīng)過反演變換得到的反演點(diǎn)組成另一個圖形,那么這兩個圖形叫做互為反演圖形.

①選擇:如果不經(jīng)過點(diǎn)O的直線l與⊙O相交,那么它關(guān)于⊙O的反演圖形是( 。
A、一個圓;B、一條直線;C、一條線段;D、兩條射線
②填空:如果直線l與⊙O相切,那么它關(guān)于⊙O的反演圖形是______,該圖形與圓O的位置關(guān)系是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

⊙O的半徑為6cm,弦AB的長為6
3
cm
,以O(shè)為圓心,3cm長為半徑作圓,與弦AB有______個公共交點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,在平面直角坐標(biāo)系中,點(diǎn)A從點(diǎn)(1,0)出發(fā)以每秒1個單位長度的速度沿x軸向右運(yùn)動,在運(yùn)動過程中,以O(shè)A為一邊作菱形OABC,使B、C在第一象限,且∠AOC=60°,連接AC、OB;同時(shí)點(diǎn)M從原點(diǎn)O出發(fā),以每秒
3
個單位長度的速度沿對角線OB向點(diǎn)B運(yùn)動,若以點(diǎn)M為圓心,MA的長為半徑畫圓,設(shè)運(yùn)動時(shí)間為t秒.
(1)當(dāng)t=1時(shí),判斷點(diǎn)O與⊙M的位置關(guān)系,并說明理由.
(2)當(dāng)⊙M與OC邊相切時(shí),求t的值.
(3)隨著t的變化,⊙M和菱形OABC四邊的公共點(diǎn)個數(shù)也在變化,請直接寫出公共點(diǎn)個數(shù)與t的大小之間的對應(yīng)關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案