【題目】如圖,在中,,,為中點(diǎn),點(diǎn)在延長線上,,,,交于點(diǎn).
(1)若,求的度數(shù);
(2)求證:;
(3)設(shè)交于點(diǎn).
①若,,求的值;
②連結(jié),分別記,,的面積為,,,當(dāng)時(shí), .(直接寫出答案)
【答案】(1)詳見解析;(2)詳見解析;(3)①;②.
【解析】
(1)根據(jù)∠AOB=∠OBC+∠OCB,只要求出∠OBC,∠OCB即可.
(2)想辦法證明CG⊥AE即可解決問題.
(3)①如圖2中,作MH⊥CE于H,解直角三角形求出AG,GM,ME即可解決問題.
②如圖3所示:連接DE.首先證明四邊形OCED是平行四邊形,再證明EC=2DG,利用平行線分線段成比例定理即可解決問題.
解:(1)∵,,
∴,.
∵,
∴.
∵,為中點(diǎn),
∴.
∴.
∴.即.
∴.
(2)連結(jié)(如圖1).
∵,,
∴.
∵,
∴四邊形為矩形.
∴.
∵,
∴.
(3)①作于(如圖2).
由,,
則四邊形是平行四邊形,
∴.
∴,.
∵,
∴.
∵,
∴.
∵,
∴.
∴.
②如圖3所示:連接DE.
∵OA=OC,∠ABC=90°,
∴BO=OA=OC,
∴∠OBC=∠OCB,
∵AE∥BC,
∴∠CAE=∠ACB,∠AGO=∠OBC,
∵CA=CE,
∴∠CAE=∠CAE,
∴∠AGB=∠AEC,
∴AD∥CE,
∵DE∥AC,
∴四邊形OCED是平行四邊形,
∴OD=CE=CA,
∵∠OAG=∠OGA,
∴OA=OG,
∴OA=OC=OG=DG,
∵DG∥EC,
∴,
∴,
設(shè)S2=m,則S3=2m,
∴S△DGE=3m,
∵OG=GD,∠AGO=∠DGE,∠OAG=∠DEG,
∴△AGO≌△EGD(AAS),
∴S△AOG=S△DEG=3m,
∵OB=OG,
∴S△ABG=2S△AOG=6m,
∴S1:S2:S3=6m:m:2m=6:1:2.
故答案為:6:1:2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)圖形具有鄰邊相等的特征時(shí),我們可以把圖形的一部分繞著公共端點(diǎn)旋轉(zhuǎn),這樣將分散的條件集中起來,從而達(dá)到解決問題的目的
如圖1,等腰直角三角形內(nèi)有一點(diǎn)連接為探究三條線段間的數(shù)量關(guān)系,我們可以將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到連接則___ ____是_ 三角形,三條線段的數(shù)量關(guān)系是_ ;
如圖2,等邊三角形內(nèi)一點(diǎn)P,連接請(qǐng)借助第一問的方法探究三條線段間的數(shù)量關(guān)系.
如圖3 ,在四邊形中,點(diǎn)在四邊形內(nèi)部,且請(qǐng)直接寫出的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】高淳固城湖大橋采用H型塔型斜拉橋結(jié)構(gòu)(如甲圖),圖乙是從圖甲抽象出的平面圖.測得拉索AB與水平橋面的夾角是45°,拉索CD與水平橋面的夾角是65°,兩拉索頂端的距離AC為2米,兩拉索底端距離BD為10米,請(qǐng)求出立柱AH的長(結(jié)果精確到0.1米).
(參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)共有3個(gè)一樣規(guī)模的大餐廳和2個(gè)一樣規(guī)模的小餐廳,經(jīng)過測試同時(shí)開放2個(gè)大餐廳和1個(gè)小餐廳,可供3000名學(xué)生就餐;同時(shí)開放1個(gè)大餐廳,1個(gè)小餐廳,可供1700名學(xué)生就餐.
(1)請(qǐng)問1個(gè)大餐廳、1個(gè)小餐廳分別可供多少名學(xué)生就餐.
(2)如果3個(gè)大餐廳和2個(gè)小餐廳全部開放,那么能否供全校4500名學(xué)生就餐?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),,反比例函數(shù)的圖象經(jīng)過矩形的頂點(diǎn),且交邊于點(diǎn),若為的中點(diǎn),則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點(diǎn)沿順時(shí)針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點(diǎn)F.
(1)求證:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,當(dāng)四邊形ADFC是菱形時(shí),求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在藝術(shù)節(jié)宣傳活動(dòng)中,采用了四種宣傳形式:A唱歌、B舞蹈、C朗誦、D器樂.全校的每名學(xué)生都選擇了一種宣傳形式參與了活動(dòng),小明對(duì)同學(xué)們選用的宣傳形式,進(jìn)行了隨機(jī)抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了如圖兩種不完整的統(tǒng)計(jì)圖表:
請(qǐng)結(jié)合統(tǒng)計(jì)圖表,回答下列問題:
(1)本次調(diào)查的學(xué)生共____人,a=______, 并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)如果該校學(xué)生有2000人,請(qǐng)你估計(jì)該校喜歡“唱歌”這種宣傳形式的學(xué)生約有多少人?
(3)學(xué)校采用調(diào)查方式讓每班在A、B、C、D四種宣傳形式中,隨機(jī)抽取兩種進(jìn)行展示,請(qǐng)用樹狀圖或列表法,求某班抽到的兩種形式有一種是“唱歌”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列對(duì)于隨機(jī)事件的概率的描述:
①拋擲一枚均勻的硬幣,因?yàn)?/span>“正面朝上”的概率是0.5,所以拋擲該硬幣100次時(shí),就會(huì)有50次“正面朝上”;
②一個(gè)不透明的袋子里裝有4個(gè)黑球,1個(gè)白球,這些球除了顏色外無其他差別.從中隨機(jī)摸出一個(gè)球,恰好是白球的概率是0.2;
③測試某射擊運(yùn)動(dòng)員在同一條件下的成績,隨著射擊次數(shù)的增加,“射中9環(huán)以上”的頻率總是在0.85附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)該運(yùn)動(dòng)員“射中9環(huán)以上”的概率是0.85
其中合理的有______(只填寫序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
材料一:一個(gè)大于1的自然數(shù),除了1和它自身外,不能被其他自然數(shù)整除的數(shù)叫做質(zhì)數(shù),否則稱為合數(shù).
其中,1和0既不是質(zhì)數(shù)也不是合數(shù).
材料二:一個(gè)較大自然數(shù)是質(zhì)數(shù)還是合數(shù)通常用“法”來判斷,主要分為三個(gè)步驟:
第一步,找出大于且最接近的平方數(shù);
第二步,用小于的所有質(zhì)數(shù)去除;
第三步,如果這些質(zhì)數(shù)都不能整除,那么是質(zhì)數(shù);如果這些質(zhì)數(shù)中至少有一個(gè)能整除,那么就是合數(shù).
如何判斷239是質(zhì)數(shù)還是合數(shù)?
第一步,;
第二步,小于16的質(zhì)數(shù)有:2、3、5、7、11、13,用2、3、5、7、11、13依次去除239;
第三步,發(fā)現(xiàn)沒有質(zhì)數(shù)能整除239,所以239是質(zhì)數(shù).
材料三:分解質(zhì)因數(shù)就是把一個(gè)合數(shù)分解成若干個(gè)質(zhì)數(shù)的乘積的形式,通過分解質(zhì)因數(shù)可以確定該合數(shù)的約數(shù)的個(gè)數(shù).若…(,,…是不相等的質(zhì)數(shù),,,…是正整數(shù)),則合數(shù)共有…個(gè)約數(shù).如,,則8共有4個(gè)約數(shù);又如,,則12共有6個(gè)約數(shù).請(qǐng)用以上方法解決下列問題:
(1)請(qǐng)用“法”判斷163是質(zhì)數(shù)還是合數(shù);
(2)求有12個(gè)約數(shù)的最小自然數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com