【題目】某服裝銷售店到生產(chǎn)廠家選購(gòu)A,B兩種品牌的服裝,若購(gòu)進(jìn)A品牌服裝1套,B品牌服裝1套,共需205元;若購(gòu)進(jìn)A品牌服裝2套,B品牌服裝3套,共需495元.

1)求A,B兩種品牌的服裝每套進(jìn)價(jià)分別為多少元?

2)若A品牌服裝每套售價(jià)為150元,B品牌服裝每套售價(jià)為100元,根據(jù)市場(chǎng)的需求,現(xiàn)決定購(gòu)進(jìn)B品牌服裝數(shù)量比A品牌服裝數(shù)量的2倍還多3套.如果購(gòu)進(jìn)B品牌服裝不多于47套,且服裝全部售出后,獲利總額不少于1245元,問共有哪幾種進(jìn)貨方案?哪種進(jìn)貨方案獲利最多?最多是多少?

【答案】1A種品牌的服裝每套進(jìn)價(jià)為120元,B種品牌的服裝每套進(jìn)價(jià)為85元;(2)有三種方案:方案一:購(gòu)進(jìn)A種品牌服裝20套,B種品牌服裝43套;方案二:購(gòu)進(jìn)A種品牌服裝21套,B種品牌服裝45套;方案三:購(gòu)進(jìn)A種品牌服裝22套,B種品牌服裝47套.購(gòu)進(jìn)A種品牌服裝22套,B種品牌服裝47套時(shí),獲利最多,最多是1365元.

【解析】

1)設(shè)A種品牌的服裝每套進(jìn)價(jià)為x元,B種品牌的服裝每套進(jìn)價(jià)為y元,根據(jù)若購(gòu)進(jìn)A品牌服裝1套,B品牌服裝1套,共需205元;若購(gòu)進(jìn)A品牌服裝2套,B品牌服裝3套,共需495,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論;

2)設(shè)購(gòu)進(jìn)A種品牌服裝m套,則購(gòu)進(jìn)B種品牌服裝套,根據(jù)購(gòu)進(jìn)B品牌服裝不多于47套且服裝全部售出后獲利總額不少于1245元,即可得出關(guān)于m的一元一次不等式組,解之即可得出m的取值范圍,結(jié)合m為整數(shù)即可得出各進(jìn)貨方案,再求出各進(jìn)貨方案所獲利潤(rùn),比較后即可得出結(jié)論.

1)設(shè)A種品牌的服裝每套進(jìn)價(jià)為x元,B種品牌的服裝每套進(jìn)價(jià)為y

由題意得:

解得:

答:A種品牌的服裝每套進(jìn)價(jià)為120元,B種品牌的服裝每套進(jìn)價(jià)為85元;

2)設(shè)購(gòu)進(jìn)A種品牌服裝m套,則購(gòu)進(jìn)B種品牌服裝

由題意得:

解得:

m為整數(shù)

則有三種方案,方案一:購(gòu)進(jìn)A種品牌服裝20套,B種品牌服裝43套;方案二:購(gòu)進(jìn)A種品牌服裝21套,B種品牌服裝45套;方案三:購(gòu)進(jìn)A種品牌服裝22套,B種品牌服裝47套,三種方案的利潤(rùn)分別如下:

(元)

(元)

(元)

故購(gòu)進(jìn)A種品牌服裝22套,B種品牌服裝47套時(shí),獲利最多,最多是1365元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a是最大的負(fù)整數(shù),b、c滿足,且a,bc分別是點(diǎn)A,B,C在數(shù)軸上對(duì)應(yīng)的數(shù).

(1)a,bc的值,并在數(shù)軸上標(biāo)出點(diǎn)AB,C;

(2)若動(dòng)點(diǎn)PC出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)P的速度是每秒2個(gè)單位長(zhǎng)度,運(yùn)動(dòng)幾秒后,點(diǎn)P到達(dá)B點(diǎn)?

(3)在數(shù)軸上找一點(diǎn)M,使點(diǎn)MA,BC三點(diǎn)的距離之和等于13,請(qǐng)直接寫出所有點(diǎn)M對(duì)應(yīng)的數(shù).(不必說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)M為直線AB上一動(dòng)點(diǎn), 都是等邊三角形,連接BN

求證: ;

分別寫出點(diǎn)M在如圖2和圖3所示位置時(shí),線段AB、BM、BN三者之間的數(shù)量關(guān)系不需證明;

如圖4,當(dāng)時(shí),證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC,C=90°,點(diǎn)DBC邊的中點(diǎn)BD=2tanB=

1)求ADAB的長(zhǎng);

2)求sin∠BAD的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,⊙P的圓心是(2,a)(a >0),半徑是2,與y軸相切于點(diǎn)C,直線y=x被⊙P截得的弦AB的長(zhǎng)為,則a的值是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l1的函數(shù)關(guān)系式為y=2x+b,直線l2過原點(diǎn)且與直線l1交于點(diǎn)P-1,-5).

1)試問(-1,-5)可以看作是怎樣的二元一次方程組的解?

2)設(shè)直線l1與直線y=x交于點(diǎn)A,求△APO的面積;

3)在x軸上是否存在點(diǎn)Q,使得△AOQ是等腰三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,A(-21)B(-4,-2),C(-1,-3),△A′B′C′是△ABC平移之后得到的圖象,并且C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為(41)

(1)A′、B′兩點(diǎn)的坐標(biāo)分別為A′______,B′______;

(2)作出△ABC平移之后的圖形△A′B′C′;

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的角平分線BP、CP相交于點(diǎn)P,∠A=100°,則∠P=____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,CD、CE分別是△ABC的高和角平分線,∠BACα,∠Bβαβ).

1)若α70°,β40°,求∠DCE的度數(shù);

2)試用αβ的代數(shù)式表示∠DCE的度數(shù)(直接寫出結(jié)果);

3)如圖,若CE是△ABC外角∠ACF的平分線,交BA延長(zhǎng)線于點(diǎn)E,且αβ30°,求∠DCE的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案