【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)D是BC邊的中點(diǎn),BD=2,tanB=.
(1)求AD和AB的長(zhǎng);
(2)求sin∠BAD的值.
【答案】(1)AB=5,AD=;(2).
【解析】試題分析:(1)由中點(diǎn)定義求BC=4,根據(jù)tanB=得:AC=3,由勾股定理得:AB=5,AD=;
(2)作高線DE,證明△DEB∽△ACB,求DE的長(zhǎng),再利用三角函數(shù)定義求結(jié)果.
試題解析:(1)∵D是BC的中點(diǎn),CD=2,
∴BD=DC=2,BC=4,
在Rt△ACB中,由tanB=,
∴,
∴AC=3,
由勾股定理得:AD=,
AB==5;
(2)過點(diǎn)D作DE⊥AB于E,
∴∠C=∠DEB=90°,
又∠B=∠B,
∴△DEB∽△ACB,
∴,
∴,
∴DE=,
∴sin∠BAD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E是對(duì)角線BD上的一點(diǎn),過點(diǎn)C作CF∥DB,且CF=DE,連接AE,BF,EF.
(1)求證:△ADE≌△BCF;
(2)若∠ABE+∠BFC=180°,則四邊形ABFE是什么特殊四邊形?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長(zhǎng)為半徑畫弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列說法中正確的個(gè)數(shù)是
①AD是∠BAC的平分線;②∠ADC=60°;③點(diǎn)D在AB的中垂線上;④S△DAC:S△ABC=1:3.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)B的坐標(biāo)為(1,0).
(1)在圖1中畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1,直接寫出點(diǎn)C的對(duì)應(yīng)點(diǎn)C1的坐標(biāo).
(2)在圖2中,以點(diǎn)O為位似中心,將△ABC放大,使放大后的△A2B2C2與△ABC的對(duì)應(yīng)邊的比為2:1(畫出一種即可).直接寫出點(diǎn)C的對(duì)應(yīng)點(diǎn)C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的三個(gè)頂點(diǎn)A,O,C在坐標(biāo)軸上,矩形的面積為12,對(duì)角線AC所在直線的解析式為y=kx-4k(k≠0).
(1)求A,C的坐標(biāo);
(2)若D為AC中點(diǎn),過D的直線交y軸負(fù)半軸于E,交BC于F,且OE=1,求直線EF的解析式;
(3)在(2)的條件下,在坐標(biāo)平面內(nèi)是否存在一點(diǎn)G,使以C,D,F,G為頂點(diǎn)的四邊形為平行四邊形,若存在,請(qǐng)直接寫出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解
如圖 a,在△ABC 中,D 是 BC 的中點(diǎn).如果用 SABC 表示△ABC 的面積,則由等底等高的三角形的面積相等,可得.同理,如圖 b,在 ABC 中,D、E 是 BC 的三等分點(diǎn),可得
結(jié)論應(yīng)用
已知△ABC 的面積為 42,請(qǐng)利用上面的結(jié)論解決下列問題:
(1)如圖 1,若 D、E 分別是 AB、AC 的中點(diǎn),CD 與 BE交于點(diǎn) F,則△DBF 的面積為 ;
類比推廣
(2)如圖 2,若 D、E 是 AB 的三等分點(diǎn),F、G 是 AC 的 三等分點(diǎn),CD 分別交 BF、BG 于 M、N,CE 分別交 BF、BG 于 P、Q,求△BEP 的面積;
(3)如圖2,問題(2)中的條件不變,求四邊形EPMD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 ,∠E=∠F=90°,∠B=∠C,AC=AB,給出下列結(jié)論:① ∠1=∠2;② BE=CF;③ △ACN≌△ABM;④ CD=DN,其中正確的結(jié)論有( )個(gè)
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,點(diǎn),,,…在射線上,點(diǎn),,,…在射線上,,,,…均為等邊三角形,若,則的邊長(zhǎng)為( )
A.8B.16C.24D.32
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com