分析 (1)根據(jù)相似三角形的判定和性質(zhì)定理證明;
(2)證明BA⊥AC,證明結論;
(3)根據(jù)相似三角形的性質(zhì)得到CD=$\sqrt{2}$CE,證明△CDE∽△CAD,根據(jù)相似三角形的性質(zhì)解答即可.
解答 (1)證明:∵∠CDE=∠CAD,∠C=∠C,
∴△CDE∽△CAD,
∴$\frac{CD}{CA}=\frac{CE}{CD}$,
∴CD2=CA•CE;
(2)AC與⊙O相切,
證明:∵AC是⊙O的直徑,
∴∠ADB=90°,
∴∠BAD+∠B=90°,
∵OB=OD,
∴∠B=∠ODB,
∵∠ODB=∠CDE,∠CDE=∠CAD,
∴∠B=∠CAD,
∴∠BAC=∠BAD+∠CAD=∠B+∠BAD=90°,
∴BA⊥AC,
∴AC與⊙O相切;
(3)解:∵AE=EC,
∴CD2=CA•CE=(AE+CE)•CE=2CE2,
∴CD=$\sqrt{2}$CE,
∵△CDE∽△CAD,
∴$\frac{DE}{AD}=\frac{CE}{CD}=\frac{CE}{{\sqrt{2}CE}}=\frac{{\sqrt{2}}}{2}$,
∵∠ADE=180°-∠ADB=90°,∠B=∠CAD,
∴tan B=tan∠CAD=$\frac{DE}{AD}=\frac{{\sqrt{2}}}{2}$.
點評 本題考查的是圓的知識的綜合應用,掌握圓的切線的判定定理、相似三角形的判定和性質(zhì)定理、銳角三角函數(shù)的概念是解題的關鍵.
科目:初中數(shù)學 來源: 題型:選擇題
A. | 3a2+4a2=7a4 | B. | 4m2n+2mn2=6m2n | C. | 2x2-$\frac{1}{2}$x2=$\frac{3}{2}$x2 | D. | 2a-a=2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 180° | B. | 220° | C. | 240° | D. | 300° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com