【題目】如圖,平行四邊形ABCD中,M是BC的中點(diǎn),且AM=9,BD=12,AD=10,則ABCD的面積是( 。
A. 30B. 36C. 54D. 72
【答案】D
【解析】
求ABCD的面積,就需求出BC邊上的高,可過(guò)D作DE∥AM,交BC的延長(zhǎng)線于E,那么四邊形ADEM也是平行四邊形,則AM=DE;在△BDE中,三角形的三邊長(zhǎng)正好符合勾股定理的逆定理,因此△BDE是直角三角形;可過(guò)D作DF⊥BC于F,根據(jù)三角形面積的不同表示方法,可求出DF的長(zhǎng),也就求出了BC邊上的高,由此可求出四邊形ABCD的面積.
作DE∥AM,交BC的延長(zhǎng)線于E,則ADEM是平行四邊形,
∴DE=AM=9,ME=AD=10,
又由題意可得,BM=BC=
AD=5,則BE=15,
在△BDE中,∵BD2+DE2=144+81=225=BE2,
∴△BDE是直角三角形,且∠BDE=90°,
過(guò)D作DF⊥BE于F,
則DF=,
∴SABCD=BCFD=10×=72.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA、PB是⊙O的切線,A、B為切點(diǎn),∠APB=60°,連接PO并延長(zhǎng)與⊙O交于C點(diǎn),連接AC,BC.
(1)求證:四邊形ACBP是菱形;
(2)若⊙O半徑為1,求菱形ACBP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人進(jìn)行1500米比賽,在比賽時(shí),兩人所跑的路程y(米)與所用的時(shí)間x(分)間的函數(shù)關(guān)系如圖所示,解答下列問(wèn)題:
(1)求甲的速度等于多少米/分;
(2)當(dāng)乙到終點(diǎn)時(shí),甲距離終點(diǎn)有多遠(yuǎn);
(3)乙在距終點(diǎn)多遠(yuǎn)處追上了甲.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)計(jì)算:(﹣2)﹣1﹣|﹣|+(﹣1)0+cos45°.
(2)已知m2﹣5m﹣14=0,求(m﹣1)(2m﹣1)﹣(m+1)2+1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)平面內(nèi),直線y=﹣x﹣4與x軸、y軸分別交于點(diǎn)A、B,點(diǎn)C在x軸正半軸上,且滿(mǎn)足OC=OB.
(1)求線段AB的長(zhǎng)及點(diǎn)C的坐標(biāo);
(2)設(shè)線段BC的中點(diǎn)為E,如果梯形AECD的頂點(diǎn)D在y軸上,CE是底邊,求點(diǎn)D的坐標(biāo)和梯形AECD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A,B兩點(diǎn)在數(shù)軸上,點(diǎn)A在原點(diǎn)O的左邊,表示的數(shù)為﹣10,點(diǎn)B在原點(diǎn)的右邊,且BO=3AO.點(diǎn)M以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)A出發(fā)向右運(yùn)動(dòng).點(diǎn)N以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)O出發(fā)向右運(yùn)動(dòng)(點(diǎn)M,點(diǎn)N同時(shí)出發(fā)).
(1)數(shù)軸上點(diǎn)B對(duì)應(yīng)的數(shù)是 ,點(diǎn)B到點(diǎn)A的距離是 ;
(2)經(jīng)過(guò)幾秒,原點(diǎn)O是線段MN的中點(diǎn)?
(3)經(jīng)過(guò)幾秒,點(diǎn)M,N分別到點(diǎn)B的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在矩形ABCD中,∠ADC的平分線DE與BC邊所在的直線交于點(diǎn)E,點(diǎn)P是線段DE上一定點(diǎn)(其中EP<PD)
(1)如圖1,若點(diǎn)F在CD邊上(不與D重合),將∠DPF繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°后,角的兩邊PD、PF分別交射線DA于點(diǎn)H、G.
①求證:PG=PF;
②探究:DF、DG、DP之間有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論.
(2)拓展:如圖2,若點(diǎn)F在CD的延長(zhǎng)線上(不與D重合),過(guò)點(diǎn)P作PG⊥PF,交射線DA于點(diǎn)G,你認(rèn)為(1)中DE、DG、DP之間的數(shù)量關(guān)系是否仍然成立?若成立,給出證明;若不成立,請(qǐng)寫(xiě)出它們所滿(mǎn)足的數(shù)量關(guān)系式,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2011貴州安順,17,4分)已知:如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上運(yùn)動(dòng),當(dāng)△ODP是腰長(zhǎng)為5的等腰三角形時(shí),則P點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四邊形ABCD的面積為______。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com