【題目】如圖,半圓O的直徑AB=10cm,弦AC=6cm,AD平分∠BAC,則AD長( )

A.4 cm
B.3 cm
C.5 cm
D.4 cm

【答案】A
【解析】連接BC,BD,OD,且OD交BC于點E,
∵AB為直徑,
∴∠ADB=∠ACB=90°,
又∵AD平分∠BAC,
∴∠CAD=∠BAD,
∴弧CD=弧BD,
∴OD垂直平分BC,
即E為BC中點,
在Rt△ACB中,
∵AB=10cm,AC=6cm,
∴BC==8cm,
∴OE=AC=3,BE=BC=4,
∴DE=OD-OE=5-3=2,
∴在Rt△BDE中,BD==2
∴在Rt△ADB中,AD==4
故答案為:A.


連接BC,BD,OD,且OD交BC于點E,根據(jù)直徑所對的圓周角為90°得出∠ADB=∠ACB=90°,由AD平分∠BAC得出∠CAD=∠BAD,由圓周角定理得出弧CD=弧BD,再根據(jù)垂徑定理得出OD垂直平分BC;在Rt△ACB中,由勾股定理得出BC=8cm,從而求出OE=3,BE=4,DE=2,在Rt△BDE和在Rt△ADB中,由勾股定理分別求出BD=2,AD=4.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線與直線的圖象如圖所示,當y1≠y2時,取y1 , y2中的較大值記為N;當y1=y2時,N=y1=y2 . 則下列說法:
①當0<x<2時,N=y1
②N隨x的增大而增大的取值范圍是x<0;
③取y1 , y2中的較小值記為M,則使得M大于4的x值不存在;
④若N=2,則x=2﹣ 或x=1.
其中正確的有( )
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點F在線段AB上,點E、G在線段CD上,ABCD

1)若BC平分∠ABD,∠D100°,求∠ABC的度數(shù).

解:∵ABCD(已知),

∴∠ABD+D180°,(   

∵∠D100°,(已知)

∴∠ABD   °,

BC平分∠ABD,(已知)

∴∠ABCABD40°.(角平分線的定義)

2)若∠1=∠2,求證:AEFG

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,以斜邊為底邊向外作等腰,連接

1)如圖1,若求證:

,求的長.

2)如圖2,若,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把六張大小形狀完全相同的小平行四邊形卡片(如圖)放在一個底面為平行四邊形的盒子底部,兩種放置方法如圖2、圖3所示,其中3中的重疊部分是平行四邊形EFGH,若EH2GH,且圖2中陰影部分的周長比圖3中陰影部分的周長大3.則ABAD的值為(  )

A.0.5B.1C.1.5D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知的周長為28,過點分別作,交直線于點,,交直線于點,若,,則的長為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 圓柱形容器中,高為底面周長為在容器內(nèi)壁離容器底部的點處有一蚊子,此時一只壁虎正好在容器外壁,離容器上沿與蚊子相對的點處,則壁虎捕捉蚊子的最短距離為___(容器厚度忽略不計. )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知兩直線L1:y=k1x+b1 , L2:y=k2x+b2 , 若L1⊥L2 , 則有k1k2=﹣1.
(1)應(yīng)用:已知y=2x+1與y=kx﹣1垂直,求k;
(2)直線經(jīng)過A(2,3),且與y= x+3垂直,求解析式.

查看答案和解析>>

同步練習冊答案