【題目】如圖,是等腰直角三角形,,以為邊向外作等邊三角形,,連接于點,交于點,過點于點.下列結(jié)論:①;②;③;④.則正確的結(jié)論是_____.(填序號)

【答案】②③④

【解析】

根據(jù)題意證明∠CAE=∠ACE=45°,∠BCD=60°,AC=CD=BD=BC即可證明②正確, ①錯誤,在△AEF中利用特殊三角函數(shù)即可證明③正確,在Rt△AOC中,利用即可證明④正確.

解:由題可知,∠CAE=∠ACE=45°,∠BCD=60°,AC=CD=BD=BC,

∴∠ACD=150°,

∴∠CDA=∠CAD=15°,

∴∠FCG=∠BDG=45°,

, ②正確, ①錯誤,

∵易證∠FAE=30°,設(shè)EF=x,則AE=CE=,

, ③正確,

設(shè)CH與AD交點為O,易證∠FCO=30°,

設(shè)OF=y,則CF=2y,由③可知,

EF=()y,

∴AF=()y,

Rt△AOC中,.

故②③④正確.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,直線y=2x+2與x軸,y軸分別交于A,B兩點,與反比例函數(shù)y=(x>0)的圖象交于點M(a,4).

(1)求反比例函數(shù)y=(x>0)的表達(dá)式;

(2)若點C在反比例函數(shù)y=(x>0)的圖象上,點D在x軸上,當(dāng)四邊形ABCD是平行四邊形時,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿對角線AC剪開,再把△ACD沿CA方向平移得到△ACD,連接AD,BC.若∠ACB=30°,AB=1,CC=x,則下列結(jié)論:①△AAD≌△CCB②當(dāng)x=1時,四邊形ABCD是菱形;③當(dāng)x=2時,△BDD為等邊三角形.其中正確的是_______(填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國中東部地區(qū)霧霾天氣趨于嚴(yán)重,環(huán)境治理已刻不容緩.我市某電器商場根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進(jìn)價是200/臺.經(jīng)過市場銷售后發(fā)現(xiàn):在一個月內(nèi),當(dāng)售價是400/臺時,可售出200臺,且售價每降低10元,就可多售出50臺.若供貨商規(guī)定這種空氣凈化器售價不能低于300/臺,代理銷售商每月要完成不低于450臺的銷售任務(wù).

1)試確定月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;

2)當(dāng)售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊ABAD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段ACAG,AH什么關(guān)系?請說明理由;

(3)設(shè)AEm

①△AGH的面積S有變化嗎?如果變化.請求出Sm的函數(shù)關(guān)系式;如果不變化,請求出定值.

②請直接寫出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1) 已知拋物線的圖象經(jīng)過點(-2,-1),其對稱軸為x=-1.求拋物線的解析式.

(2) 如圖,在△ABC中,AB=AC,點D,E分別是BC,AB邊上的點,且∠ADE=C

求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象交于C2n)、D兩點,與x軸,y軸分別交于A、B02)兩點,如果△AOC的面積為6.

1)求點A的坐標(biāo)

2)求一次函數(shù)和反比例函數(shù)的解析式;

3)如圖2,連接DO并延長交反比例函數(shù)的圖象于點E,連接CE,求點E的坐標(biāo)和△COE的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一張矩形紙片中,,,點,分別在, 上,將紙片沿直線折疊,點落在上的一點處,點落在點處,有以下四個結(jié)論:

①四邊形是菱形;②平分;③線段的取值范圍為;④當(dāng)點與點重合時,

以上結(jié)論中,你認(rèn)為正確的有( 。﹤.

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)的三個景點A、B、C在同一線路上甲、乙兩名游客從景點A出發(fā),甲步行到景點C;乙乘景區(qū)觀光車先到景點B,B處停留一段時間后,再步行到景點C,甲、乙兩人同時到達(dá)景點C甲、乙兩人距景點A的路程y()與甲出發(fā)的時間x()之間的函數(shù)圖象如圖所示

1乙步行的速度為_ __/

2求乙乘景區(qū)觀光車時yx之間的函數(shù)關(guān)系式

3甲出發(fā)多長時間與乙第一次相遇?

查看答案和解析>>

同步練習(xí)冊答案