【題目】如圖,在一張矩形紙片中,,,點(diǎn),分別在, 上,將紙片沿直線折疊,點(diǎn)落在上的一點(diǎn)處,點(diǎn)落在點(diǎn)處,有以下四個(gè)結(jié)論:
①四邊形是菱形;②平分;③線段的取值范圍為;④當(dāng)點(diǎn)與點(diǎn)重合時(shí),.
以上結(jié)論中,你認(rèn)為正確的有( 。﹤(gè).
A. 1B. 2C. 3D. 4
【答案】C
【解析】
①先判斷出四邊形CFHE是平行四邊形,再根據(jù)翻折的性質(zhì)可得CF=FH,然后根據(jù)鄰邊相等的平行四邊形是菱形證明,判斷出①正確;
②根據(jù)菱形的對(duì)角線平分一組對(duì)角線可得∠BCH=∠ECH,然后求出只有∠DCE=30°時(shí)EC平分∠DCH,判斷出②錯(cuò)誤;
③點(diǎn)H與點(diǎn)A重合時(shí),設(shè)BF=x,表示出AF=FC=8-x,利用勾股定理列出方程求解得到BF的最小值,點(diǎn)G與點(diǎn)D重合時(shí),CF=CD,求出最大值BF=4,然后寫出BF的取值范圍,判斷出③正確;
④過點(diǎn)F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,判斷出④正確.
解:
①∵FH與CG,EH與CF都是矩形ABCD的對(duì)邊AD、BC的一部分,
∴FH∥CG,EH∥CF,
∴四邊形CFHE是平行四邊形,
由翻折的性質(zhì)得,CF=FH,
∴四邊形CFHE是菱形,(故①正確);
②∴∠BCH=∠ECH,
∴只有∠DCE=30°時(shí)EC平分∠DCH,(故②錯(cuò)誤);
③點(diǎn)H與點(diǎn)A重合時(shí),此時(shí)BF最小,設(shè)BF=x,則AF=FC=8-x,
在Rt△ABF中,AB2+BF2=AF2,
即42+x2=(8-x)2,
解得x=3,
點(diǎn)G與點(diǎn)D重合時(shí),此時(shí)BF最大,CF=CD=4,
∴BF=4,
∴線段BF的取值范圍為3≤BF≤4,(故③正確);
過點(diǎn)F作FM⊥AD于M,
則ME=(8-3)-3=2,
由勾股定理得,
EF===,(故④正確);
綜上所述,結(jié)論正確的有①③④共3個(gè),
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,
(1)求直線的函數(shù)解析式;
(2)如圖2,點(diǎn)在線段(不包括,兩點(diǎn))上,連接與軸交于點(diǎn),連接.、的垂直平分線交于點(diǎn),連接并延長到點(diǎn),使,作軸于,連結(jié).求證:;
(3)在(2)的條件下,當(dāng)的邊時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是等腰直角三角形,,以為邊向外作等邊三角形,,連接交于點(diǎn),交于點(diǎn),過點(diǎn)作交于點(diǎn).下列結(jié)論:①;②;③;④.則正確的結(jié)論是_____.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)A(﹣1,0),B(3,0).下列結(jié)論:①2a﹣b=0;②(a+c)2<b2;③當(dāng)﹣1<x<3時(shí),y<0;④當(dāng)a=1時(shí),將拋物線先向上平移2個(gè)單位,再向右平移1個(gè)單位,得到拋物線y=(x﹣2)2﹣2.其中正確的是( 。
A. ①③ B. ②③ C. ②④ D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知Rt△ABC,∠BAC=90°,點(diǎn)D是BC中點(diǎn),AD=AC,BC=4,過A,D兩點(diǎn)作⊙O,交AB于點(diǎn)E,
(1)求弦AD的長;
(2)如圖1,當(dāng)圓心O在AB上且點(diǎn)M是⊙O上一動(dòng)點(diǎn),連接DM交AB于點(diǎn)N,求當(dāng)ON等于多少時(shí),三點(diǎn)D、E、M組成的三角形是等腰三角形?
(3)如圖2,當(dāng)圓心O不在AB上且動(dòng)圓⊙O與DB相交于點(diǎn)Q時(shí),過D作DH⊥AB(垂足為H)并交⊙O于點(diǎn)P,問:當(dāng)⊙O變動(dòng)時(shí)DP﹣DQ的值變不變?若不變,請(qǐng)求出其值;若變化,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是邊長為的等邊三角形,邊在射線上,且,點(diǎn)從點(diǎn)出發(fā),沿OM的方向以1cm/s的速度運(yùn)動(dòng),當(dāng)D不與點(diǎn)A重合時(shí),將繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)60°得到,連接DE.
(1)如圖1,求證:是等邊三角形;
(2)如圖2,當(dāng)6<t<10時(shí),DE是否存在最小值?若存在,求出DE的最小值;若不存在,請(qǐng)說明理由.
(3)當(dāng)點(diǎn)D在射線OM上運(yùn)動(dòng)時(shí),是否存在以D,E,B為頂點(diǎn)的三角形是直角三角形?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點(diǎn),以BD為直徑的⊙O經(jīng)過點(diǎn)E,且交BC于點(diǎn)F.
(1)求證:AC是⊙O的切線;
(2)若BF=6,⊙O的半徑為5,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)商銷售每箱進(jìn)價(jià)為40元的蘋果,物價(jià)部門規(guī)定每箱售價(jià)不得高于55元,市場(chǎng)調(diào)查發(fā)現(xiàn),若每箱以50元的價(jià)格銷售,平均每天銷售90箱,價(jià)格每提高1元,平均每天少銷售3箱.
(1)求平均每天銷售量箱與銷售價(jià)元/箱之間的函數(shù)關(guān)系式.
(2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售價(jià)(元/箱)之間的函數(shù)關(guān)系式.
(3)當(dāng)每箱蘋果的銷售價(jià)為多少元時(shí),可以獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A為雙曲線y=(k≠0)上一點(diǎn),B為x軸上一點(diǎn),且△AOB為等邊三角形,△AOB的邊長為2,則k的值為( )
A. 2 B. ±2 C. D. ±
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com