分析 (1)利用半徑OA=OC可得∠COB=2∠A,然后利用∠COB=2∠PCB即可證得結(jié)論,再根據(jù)圓周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切線;
(2)連接MA,MB,由圓周角定理可得∠ACM=∠BAM,進而可得△AMC∽△NMA,故AM2=MC•MN;等量代換可得MN•MC=BM2=AM2,代入數(shù)據(jù)即可得到結(jié)論.
解答 (1)證明:∵OA=OC,
∴∠A=∠ACO.
∴∠COB=2∠ACO.
又∵∠COB=2∠PCB,
∴∠ACO=∠PCB.
∵AB是⊙O的直徑,
∴∠ACO+∠OCB=90°.
∴∠PCB+∠OCB=90°,即OC⊥CP.
∵OC是⊙O的半徑,
∴PC是⊙O的切線.
(2)解:連接MA、MB.(如圖)
∵點M是弧AB的中點,
∴$\widehat{AM}$=$\widehat{BM}$,
∴∠ACM=∠BAM.
∵∠AMC=∠AMN,
∴△AMC∽△NMA.
∴$\frac{AM}{NM}=\frac{CM}{AM}$.
∴AM2=MC•MN.
∵MC•MN=36,
∴AM=6,
∴BM=AM=6.
點評 此題主要考查了圓的切線的判定及圓周角定理的運用和相似三角形的判定和性質(zhì)的應(yīng)用,是一道綜合性的題目,難度中等偏上.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com