【題目】如圖,一塊等腰直角的三角板ABC,在水平桌面上繞點(diǎn)C按順時針方向旋轉(zhuǎn)到A′B′C的位置,使A、C、B′三點(diǎn)共線,那么旋轉(zhuǎn)角度的大小為( )

A.45°
B.90°
C.120°
D.135°

【答案】D
【解析】解:∵三角板ABC為等腰三角形,
∴∠ACB=45°,
∵在水平桌面上繞點(diǎn)C按順時針方向旋轉(zhuǎn)到A′B′C的位置,使A、C、B′三點(diǎn)共線,
∴∠A′CB′=∠ACB=45°,∠ACA′等于旋轉(zhuǎn)角,
∵點(diǎn)A、C、B′三點(diǎn)共線,
∴∠ACB′=180°,
∴∠ACA′=180°﹣∠A′CB′=135°,
即旋轉(zhuǎn)角為135°.
故選D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解圖形的旋轉(zhuǎn)的相關(guān)知識,掌握每一個點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度,任意一對對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.旋轉(zhuǎn)的方向、角度、旋轉(zhuǎn)中心是它的三要素,以及對旋轉(zhuǎn)的性質(zhì)的理解,了解①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,分別以點(diǎn)A和點(diǎn)B為圓心,大于 AB的長為半徑畫弧,兩弧相交于點(diǎn)M,N,作直線MN,交BC于點(diǎn)D,連接AD.若△ADC的周長為10,AB=7,則△ABC的周長為(
A.7
B.14
C.17
D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九(1)班同學(xué)為了解2011年某小區(qū)家庭月均用水情況,隨機(jī)調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下整理.請解答以下問題:
(1)把下面的頻數(shù)分布表和頻數(shù)分布直方圖補(bǔ)充完整;

月均用水量x(t)

頻數(shù)(戶)

頻率

0<x≤5

6

0.12

5<x≤10

0.24

10<x≤15

16

0.32

15<x≤20

10

0.20

20<x≤25

4

25<x≤30

2

0.04



(2)求該小區(qū)用水量不超過15t的家庭占被調(diào)查家庭總數(shù)的百分比;
(3)若該小區(qū)有1000戶家庭,根據(jù)調(diào)查數(shù)據(jù)估計(jì),該小區(qū)月均用水量超過20t的家庭大約有多少戶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)m、n是一元二次方程x2+3x70的兩個根,則m2+4m+n=(  )

A.3B.4C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列多項(xiàng)式相乘的結(jié)果是a2﹣a﹣6的是( 。
A.(a﹣2)(a+3)
B.(a+2)(a﹣3)
C.(a﹣6)(a+1)
D.(a+6)(a﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡7(x+y)﹣5(x+y)的結(jié)果是(  )

A. 2x+2y B. 2x+y C. x+2y D. 2x﹣2y

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB∥DC,AC和BD相交于點(diǎn)O,E是CD上一點(diǎn),F(xiàn)在OD上一點(diǎn),且∠1=∠A.
(1)求證:FE∥OC;
(2)若∠DFE=70°,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙每個小方格都是邊長為1個單位長度的正方形,在平面直角坐標(biāo)系中,點(diǎn)A(1,0),B(5,0),C(3,3),D(1,4).

(1)描出A、B、C、D四點(diǎn)的位置,并順次連接A、B、C、D;
(2)四邊形ABCD的面積是;(直接寫出結(jié)果)
(3)把四邊形ABCD向左平移6個單位,再向下平移1個單位得到四邊形A′B′C′D′在圖中畫出四邊形A′B′C′D′,并寫出A′B′C′D′的坐標(biāo).[(1)(3)問的圖畫在同一坐標(biāo)系中].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,點(diǎn)F為對角線BD上一點(diǎn),點(diǎn)E為AB的延長線上一點(diǎn),DF=BE,CE=CF.求證:(1)△CFD≌△CEB;(2)∠CFE=60°.

查看答案和解析>>

同步練習(xí)冊答案